Developing and evaluating a mobile driver fatigue detection network based on electroencephalograph signals
نویسندگان
چکیده
The rapid development of driver fatigue detection technology indicates important significance of traffic safety. The authors' main goals of this Letter are principally three: (i) A middleware architecture, defined as process unit (PU), which can communicate with personal electroencephalography (EEG) node (PEN) and cloud server (CS). The PU receives EEG signals from PEN, recognises the fatigue state of the driver, and transfer this information to CS. The CS sends notification messages to the surrounding vehicles. (ii) An android application for fatigue detection is built. The application can be used for the driver to detect the state of his/her fatigue based on EEG signals, and warn neighbourhood vehicles. (iii) The detection algorithm for driver fatigue is applied based on fuzzy entropy. The idea of 10-fold cross-validation and support vector machine are used for classified calculation. Experimental results show that the average accurate rate of detecting driver fatigue is about 95%, which implying that the algorithm is validity in detecting state of driver fatigue.
منابع مشابه
Design of a Fatigue Detection System for High-Speed Trains Based on Driver Vigilance Using a Wireless Wearable EEG
The vigilance of the driver is important for railway safety, despite not being included in the safety management system (SMS) for high-speed train safety. In this paper, a novel fatigue detection system for high-speed train safety based on monitoring train driver vigilance using a wireless wearable electroencephalograph (EEG) is presented. This system is designed to detect whether the driver is...
متن کاملA Novel Feature Extraction Method for Epileptic EEG Based on Degree Distribution of Complex Network
Automatic seizure detection is significant in relieving the heavy workload of inspecting prolonged electroencephalograph (EEG). Feature extraction method for automatic epileptic seizure detection has important research significance because the extracted feature seriously affects the detection algorithm performance. Recently complex network theory shows its advantages to analyze the nonlinear an...
متن کاملP25: Driver Cognitive Fatigue Detection Based on Changes in EEG Frequency Bands in Non-Professional Drivers during a Simulated Driving Task
لطفاً به چکیده انگلیسی مراجعه شود.
متن کاملReal-Time EEG-Based Detection of Fatigue Driving Danger for Accident Prediction
This paper proposes a real-time electroencephalogram (EEG)-based detection method of the potential danger during fatigue driving. To determine driver fatigue in real time, wavelet entropy with a sliding window and pulse coupled neural network (PCNN) were used to process the EEG signals in the visual area (the main information input route). To detect the fatigue danger, the neural mechanism of d...
متن کاملResearch on the Relationship between Reaction Ability and Mental State for Online Assessment of Driving Fatigue
Background: Driving fatigue affects the reaction ability of a driver. The aim of this research is to analyze the relationship between driving fatigue, physiological signals and driver's reaction time. Methods: Twenty subjects were tested during driving. Data pertaining to reaction time and physiological signals including electroencephalograph (EEG) were collected from twenty simulation experime...
متن کامل