Extended fractal analysis for texture classification and segmentation

نویسنده

  • Lance M. Kaplan
چکیده

The Hurst parameter for two-dimensional (2-D) fractional Brownian motion (fBm) provides a single number that completely characterizes isotropic textured surfaces whose roughness is scale-invariant. Extended self-similar (ESS) processes were previously introduced in order to provide a generalization of fBm. These new processes are described by a number of multiscale Hurst parameters. In contrast to the single Hurst parameter, the extended parameters are able to characterize a greater variety of natural textures where the roughness of these textures is not necessarily scale-invariant. In this work, we evaluate the effectiveness of multiscale Hurst parameters as features for texture classification and segmentation. For texture classification, the performance of the generalized Hurst features is compared to traditional Hurst and Gabor features. Our experiments show that classification accuracy for the generalized Hurst and Gabor features are comparable even though the generalized Hurst features lower the dimensionality by a factor of five. Next, the segmentation accuracy using generalized and standard Hurst features is evaluated on images of texture mosaics. For these experiments, the performance is evaluated with and without supplemental contrast and average grayscale features. Finally, we investigate the effectiveness of the Hurst features to segment real synthetic aperture radar (SAR) imagery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image Processing Applications Based on Texture and Fractal Analysis

Texture analysis research attempts to solve two important kinds of problems: texture segmentation and texture classification. In some applications, textured image segmentation can be solved by classification of small regions obtained from image partition. Two classes of features are proposed in the decision theoretic recognition problem for textured image classification. The first class derives...

متن کامل

Texture Analysis

This chapter reviews and discusses various aspects of texture analysis. The concentration is on the various methods of extracting textural features from images. The geometric, random field, fractal, and signal processing models of texture are presented. The major classes of texture processing problems such as segmentation, classification, and shape from texture are discussed. The possible appli...

متن کامل

Color texture analysis based on fractal descriptors

Color texture classification is an important step in image segmentation and recognition. The color information is especially important in textures of natural scenes, such as leaves surfaces, terrains models, etc. In this paper, we propose a novel approach based on the fractal dimension for color texture analysis. The proposed approach investigates the complexity in R, G and B color channels to ...

متن کامل

Color texture image classification based on fractal features and extreme learning machine

Texture classification, especially color texture classification, is considered a significant step in segmentation and object classification. The property of color and texture is important for characterizing objects in natural scenes. Fractal dimension (FD) has many applications in the field of image compression and image segmentation. A series of FD features, such as mean, standard deviation, l...

متن کامل

Classification of Endometrial Images for Aiding the Diagnosis of Hyperplasia Using Logarithmic Gabor Wavelet

  Introduction: The process of discriminating among benign and malignant hyperplasia begun with subjective methods using light microscopy and is now being continued with computerized morphometrical analysis requiring some features. One of the main features called Volume Percentage of Stroma (VPS) is obtained by calculating the percentage of stroma texture. Currently, this feature is calculated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE transactions on image processing : a publication of the IEEE Signal Processing Society

دوره 8 11  شماره 

صفحات  -

تاریخ انتشار 1999