Predicting residue-residue contact maps by a two-layer, integrated neural-network method.
نویسندگان
چکیده
A neural network method (SPINE-2D) is introduced to provide a sequence-based prediction of residue-residue contact maps. This method is built on the success of SPINE in predicting secondary structure, residue solvent accessibility, and backbone torsion angles via large-scale training with overfit protection and a two-layer neural network. SPINE-2D achieved a 10-fold cross-validated accuracy of 47% (+/-2%) for top L/5 predicted contacts between two residues with sequence separation of six or more and an accuracy of 24 +/- 1% for nonlocal contacts with sequence separation of 24 residues or more. The accuracies of 23% and 26% for nonlocal contact predictions are achieved for two independent datasets of 500 proteins and 82 CASP 7 targets, respectively. A comparison with other methods indicates that SPINE-2D is among the most accurate methods for contact-map prediction. SPINE-2D is available as a webserver at http://sparks.informatics.iupui.edu.
منابع مشابه
Progress in predicting inter-residue contacts of proteins with neural networks and correlated mutations.
This article presents recent progress in predicting inter-residue contacts of proteins with a neural network-based method. Improvement over the results obtained at the previous CASP3 competition is attained by using as input to the network a complex code, which includes evolutionary information, sequence conservation, correlated mutations, and predicted secondary structures. The predictor was t...
متن کاملImproving the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins by guided-learning through a two-layer neural network.
This article attempts to increase the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins through improved learning. Most methods developed for improving the backpropagation algorithm of artificial neural networks are limited to small neural networks. Here, we introduce a guided-learning method suitable for networks of any size. The method emp...
متن کاملA neural network based predictor of residue contacts in proteins.
We describe a method based on neural networks for predicting contact maps of proteins using as input chemicophysical and evolutionary information. Neural networks are trained on a data set comprising the contact maps of 200 non-homologous proteins of well resolved three-dimensional structures. The systems learn the association rules between the covalent structure of each protein and its corresp...
متن کاملUsing Artificial Neural Network Modeling in Predicting the Amount of Methyl Violet Dye Absorption by Modified Palm Fiber
Bio-absorbent palm fiber was applied for removal of cationic violet methyl dye from water solution. For this purpose, a solid phase extraction method combined with the artificial neural network (ANN) was used for preconcentration and determination of removal level of violet methyl dye. This method is influenced by factors such as pH, the contact time, the rotation speed, and the adsorbent dosag...
متن کاملEnhancing interacting residue prediction with integrated contact matrix prediction in protein-protein interaction
Identifying the residues in a protein that are involved in protein-protein interaction and identifying the contact matrix for a pair of interacting proteins are two computational tasks at different levels of an in-depth analysis of protein-protein interaction. Various methods for solving these two problems have been reported in the literature. However, the interacting residue prediction and con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proteins
دوره 76 1 شماره
صفحات -
تاریخ انتشار 2009