An economical fluorescence detector for lab-on-a-chip devices with a light emitting photodiode and a low-cost avalanche photodiode.
نویسندگان
چکیده
An economical fluorescence detector was developed with an LED as the exciting source and a low-cost avalanche photodiode (APD) module as a photon sensor. The detector was arranged in an epifluorescence configuration using a microscope objective (20× or 40×) and a dichroic mirror. The low-cost APD was biased by a direct current (DC) high voltage power supply at 121 V, which is much lower than that normally used for a PMT. Both DC and square wave (SW) supplies were used to power the LED and different data treatment protocols, such as simple average for DC mode, software based lock-in amplification and time specific average for SW mode, were tested to maximize the signal-to-noise ratio. Using an LED at a DC mode with simple data averaging, a limit of detection of 0.2 nmol L(-1) for sodium fluorescein was attained, which is among the lowest ever achieved with an LED as an excitation source. The detector was successfully used in both capillary and chip electrophoresis. The most significant advantages of the detector are the compact size and low cost of its parts. The aim of the work is to prove that widely available, low-cost components for civilian use can be successfully used for miniaturized analytical devices.
منابع مشابه
Flexible planar microfluidic chip employing a light emitting diode and a PIN-photodiode for portable flow cytometers.
Detection of fluorescence particles is a key method of flow cytometry. We evaluate the performance of a design for a microfluidic fluorescence particle detection device. Due to the planar design with low layer thicknesses, we avoid optical components such as lenses or dichroic mirrors and substitute them with a shadow mask and colored film filters. A commercially available LED is used as the li...
متن کاملLarge-Area, Low-Noise, High Speed, Photodiode-Based Fluorescence Detectors with Fast Overdrive Recovery
Two large-area, low noise, high speed fluorescence detectors have been built. One detector consists of a photodiode with an area of 28 mm x 28 mm and a low noise transimpedance amplifier. This detector has a input light-equivalent spectral noise density of less than 3 pW/ √ Hz, can recover from a large scattered light pulse within 10 μs, and has a bandwidth of at least 900 kHz. The second detec...
متن کاملModelling of High Quantum Efficiency Avalanche Photodiode
A model of a low noise high quantum efficiency n+np Germanium Photodiode utilizing ion implantation technique and subsequent drive-in diffusion in the n layer is presented. Numerical analysis is used to study the influence of junction depth and bulk concentration on the electric field profile and quantum efficiency. The performance of the device is theoretically treated especially at the wave-l...
متن کاملNon-emissive plastic colour filters for fluorescence detection.
We report the fabrication of non-emissive short- and long-pass filters on plastic for high sensitivity fluorescence detection. The filters were prepared by overnight immersion of titania-coated polyethylene terephthalate (PET) in an appropriate dye solution - xylene cyanol for short-pass filtering and fluorescein disodium salt for long-pass filtering - followed by repeated washing to remove exc...
متن کاملDesign and Manipulation 3D Imaging System by using Photodiode Grid
Introduction: Radiation imaging is one of the applicable methods in diagnostic medicine and nondestructive testing for industrial applications. In nondestructive 3D imaging, in addition to the radiation source, there is a requirement for a suitable detection system, data acquisition system, mechanical sections for moving objects, reconstruction algorithm and finally a computer for processing an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Analyst
دوره 137 2 شماره
صفحات -
تاریخ انتشار 2012