Pegylated, steptavidin-conjugated quantum dots are effective detection elements for reverse-phase protein microarrays.

نویسندگان

  • David Geho
  • Nicholas Lahar
  • Prem Gurnani
  • Michael Huebschman
  • Paul Herrmann
  • Virginia Espina
  • Alice Shi
  • Julia Wulfkuhle
  • Harold Garner
  • Emanuel Petricoin
  • Lance A Liotta
  • Kevin P Rosenblatt
چکیده

Protein microarray technologies provide a means of investigating the proteomic content of clinical biopsy specimens in order to determine the relative activity of key nodes within cellular signaling pathways. A particular kind of protein microarray, the reverse-phase microarray, is being evaluated in clinical trials because of its potential to utilize limited amounts of cellular material obtained through biopsy. Using this approach, cellular lysates are arrayed in dilution curves on nitrocellulose substrates for subsequent probing with antibodies. To improve the sensitivity and utility of reverse-phase microarrays, we tested whether a new reporter technology as well as a new detection instrument could enhance microarray performance. We describe the use of an inorganic fluorescent nanoparticle conjugated to streptavidin, Qdot 655 Sav, in a reverse-phase protein microarray format for signal pathway profiling. Moreover, a pegylated form of this bioconjugate, Qdot 655 Sav, is found to have superior detection characteristics in assays performed on cellular protein extracts over the nonpegylated form of the bioconjugate. Hyperspectral imaging of the quantum dot microarray enabled unamplified detection of signaling proteins within defined cellular lysates, which indicates that this approach may be amenable to multiplexed, high-throughput reverse-phase protein microarrays in which numerous analytes are measured in parallel within a single spot.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Somatostatin Decorated Quantum Dots Nanoparticles for Targeting of Somatostatin Receptors

Due to the unique optical properties like high brightness and narrow emission bands of Quantum dots, it is used as simple fluorescence materials in bio-imaging, immunoassays, microarrays, and other applications. To easy invistigate cell lines that overexpressed somtostatin receptors, somatostatin (SST) was conjugated with Quantum dots carrying PEG amine (Qdots-PEG-NH2). The conjugation of SST t...

متن کامل

Somatostatin Decorated Quantum Dots Nanoparticles for Targeting of Somatostatin Receptors

Due to the unique optical properties like high brightness and narrow emission bands of Quantum dots, it is used as simple fluorescence materials in bio-imaging, immunoassays, microarrays, and other applications. To easy invistigate cell lines that overexpressed somtostatin receptors, somatostatin (SST) was conjugated with Quantum dots carrying PEG amine (Qdots-PEG-NH2). The conjugation of SST t...

متن کامل

Imaging GABAc Receptors with Ligand-Conjugated Quantum Dots

We report a methodology for labeling the GABAc receptor on the surface membrane of intact cells. This work builds upon our earlier work with serotonin-conjugated quantum dots and our studies with PEGylated quantum dots to reduce nonspecific binding. In the current approach, a PEGylated derivative of muscimol was synthesized and attached via an amide linkage to quantum dots coated in an amphiphi...

متن کامل

Dual role of CdSe quantum dots for simultaneous separation and spectrofluorimetric ultrasensitive determination of heparin

The present study offers a new method based on CdSe quantum dots (QDs) for simultaneous separation and determination of trace levels of heparin (Hep) in human serum samples. In this technique, CdSe QDs perform two different functions in Hep analysis process. Mercaptoacetic acid-capped red CdSe QDs (λex=690 nm) are conjugated to Hep and the Hep-QD conjugation is then used as an extraction tool ...

متن کامل

Quantum dots-based reverse phase protein microarray.

CdSe nanocrystals, also called quantum dots (Qdots) are a novel class of fluorophores, which have a diameter of a few nanometers and possess high quantum yield, tunable emission wavelength and photostability. They are an attractive alternative to conventional fluorescent dyes. Quantum dots can be silanized to be soluble in aqueous solution under biological conditions, and thus be used in bio-de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioconjugate chemistry

دوره 16 3  شماره 

صفحات  -

تاریخ انتشار 2005