Mellin Transforms: Harmonic Sums

نویسنده

  • Po-Han Tseng
چکیده

My assignment is going to introduce the Mellin transform and its application on harmonic sums [1]. Hjalmar Mellin(1854-1933, [2] for a summary of his works) gave his name to the Mellin transform, a close relative of the integral transforms of Laplace and Fourier. Mellin transform is useful to the asymptotic analysis of a large class of sums that arise in combinatorial mathematics, discrete probabilistic models, and the average-case analysis of algorithms. The main applications are in the area of digital data structures, probabilistic algorithms, and communication theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Harmonic Sums and Mellin Transforms up to two–loop Order

A systematic study is performed on the finite harmonic sums up to level four. These sums form the general basis for the Mellin transforms of all individual functions fi(x) of the momentum fraction x emerging in the quantities of massless QED and QCD up to two–loop order, as the unpolarized and polarized splitting functions, coefficient functions, and hard scattering cross sections for space and...

متن کامل

Harmonic sums, Mellin transforms and Integrals

This paper describes algorithms to deal with nested symbolic sums over combinations of harmonic series, binomial coefficients and denominators. In addition it treats Mellin transforms and the inverse Mellin transformation for functions that are encountered in Feynman diagram calculations. Together with results for the values of the higher harmonic series at infinity the presented algorithms can...

متن کامل

Harmonic Sums and Mellin Transforms

with n0 ≡ N. The finite harmonic sums form classes which are given by their transcendentality t = ∑m l=1 |kl|. This term was chosen to characterize the behavior of these sums for N → ∞. In this case the values of the sums, if existing, are described by a transcendental number of rank t, i.e. log 2, ζ(2), ζ(3) or log 2·ζ(2), etc. for t = 1, 2, 3, ... All harmonic sums have a linear representatio...

متن کامل

Structural Relations of Harmonic Sums and Mellin Transforms at Weight w = 6 1 Johannes Blümlein

We derive the structural relations between nested harmonic sums and the corresponding Mellin transforms of Nielsen integrals and harmonic polylogarithms at weight w = 6. They emerge in the calculations of massless single–scale quantities in QED and QCD, such as anomalous dimensions and Wilson coefficients, to 3– and 4–loop order. We consider the set of the multiple harmonic sums at weight six w...

متن کامل

Structural relations of harmonic sums and Mellin transforms up to weight w=5

We derive the structural relations between the Mellin transforms of weighted Nielsen integrals emerging in the calculation of massless or massive single–scale quantities in QED and QCD, such as anomalous dimensions and Wilson coefficients, and other hard scattering cross sections depending on a single scale. The set of all multiple harmonic sums up to weight five cover the sums needed in the ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008