The innate reactivity of a membrane associated peptide towards lipids: acyl transfer to melittin without enzyme catalysis.

نویسندگان

  • Robert H Dods
  • Jackie A Mosely
  • John M Sanderson
چکیده

The innate reactivity of the peptide melittin (H-GIGAVLKVLTTGLPALISWIKRKRQQ-NH(2)) towards membrane lipids has been explored using LC-MS methods. The high sensitivity afforded by LC-MS analysis enabled acyl transfer to the peptide to be detected, within 4 h, from membranes composed of phosphocholines (PCs). Acyl transfer from PCs was also observed from mixtures of PC with phosphoserine (PS) or phosphoglycerol (PG). In the latter case, transfer from PG was also detected. The half-lives for melittin conversion varied between 24 h and 75 h, being fastest for POPC and slowest for DOPC/DMPG mixtures. The order of reactivity for amino groups on the peptide was N-terminus > K23 ≫ K21 > K7. Products arising from double-acylation of melittin were detected as minor components, together with a putative component derived from transesterification involving S18 of the peptide.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of lipid chain unsaturation on membrane-bound melittin: a fluorescence approach.

Melittin, a cationic hemolytic peptide, is intrinsically fluorescent due to the presence of a single functionally important tryptophan residue. The organization of membrane-bound melittin is dependent on the physical state and composition of membranes. In particular, polyunsaturated lipids have been shown to modulate the membrane-disruptive action of melittin. Phospholipids with polyunsaturated...

متن کامل

Reactivity and catalysis in reactions of the serine hydroxyl group and of O-acyl serines.

Certain acyl transfer and hydrolytic reactions catalyzed by chymotrypsin and related enzymes proceed with the formation of an isolable enzyme-substrate intermediate, in which the acyl portion of the substrate is covalently bound to the enzyme. A considerable body of evidence now exists which suggests that the site of enzyme acylation, as well as phosphorylat,ion, is the hydroxyl group of a seri...

متن کامل

Molecular dynamics simulation of melittin in a dimyristoylphosphatidylcholine bilayer membrane.

Molecular dynamics trajectories of melittin in an explicit dimyristoyl phosphatidylcholine (DMPC) bilayer are generated to study the details of lipid-protein interactions at the microscopic level. Melittin, a small amphipathic peptide found in bee venom, is known to have a pronounced effect on the lysis of membranes. The peptide is initially set parallel to the membrane-solution interfacial reg...

متن کامل

Modulation of tryptophan environment in membrane-bound melittin by negatively charged phospholipids: implications in membrane organization and function.

Melittin is a cationic hemolytic peptide isolated from the European honey bee, Apis mellifera. Since the association of the peptide in the membrane is linked with its physiological effects, a detailed understanding of the interaction of melittin with membranes is crucial. We have investigated the interaction of melittin with membranes of varying surface charge in the context of recent studies w...

متن کامل

Cholesterol inhibits the lytic activity of melittin in erythrocytes.

Although cell lysis by the hemolytic peptide, melittin, has been extensively studied, the role of specific lipids of the erythrocyte membrane on melittin-induced hemolysis remains unexplored. In this report, we have explored the modulatory role of cholesterol on the hemolytic activity of melittin by specifically depleting cholesterol from rat erythrocytes using methyl-beta-cyclodextrin (MbetaCD...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Organic & biomolecular chemistry

دوره 10 28  شماره 

صفحات  -

تاریخ انتشار 2012