A high order finite difference method with Richardsonextrapolation for 3D convection diffusion equation
نویسندگان
چکیده
In this paper, we extend the Sun and Zhang’s [24] work on high order finite difference method, which is based on the Richardson extrapolation technique and an operator interpolation scheme for the one and two dimensional steady convection diffusion equations to the three dimensional case. Firstly, we employ a fourth order compact difference scheme to get the fourth order accurate solution on the fine and the coarse grids. Then, we use the Richardson extrapolation technique by combining the two approximate solutions to get a sixth order accurate solution on coarse grid. Finally, we apply an operator interpolation scheme to achieve the sixth order accurate solution on the fine grid. During this process, we use alternating direction implicit (ADI) method to solve the resulting linear systems. Numerical experiments are conducted to verify the accuracy and effectiveness of the present method. 2009 Elsevier Inc. All rights reserved.
منابع مشابه
High Accuracy and Scalable Multiscale Multigrid Computation for 3D Convection Diffusion Equation
We present a sixth order explicit compact finite difference scheme to solve the three dimensional (3D) convection diffusion equation. We first use multiscale multigrid method to solve the linear systems arising from a 19-point fourth order discretization scheme to compute the fourth order solutions on both the coarse grid and the fine grid. Then an operator based interpolation scheme combined w...
متن کاملNumerical solution of Convection-Diffusion equations with memory term based on sinc method
In this paper, we study the numerical solution of Convection-Diffusion equation with a memory term subject to initial boundary value conditions. Finite difference method in combination with product trapezoidal integration rule is used to discretize the equation in time and sinc collocation method is employed in space. The accuracy and error analysis of the method are discussed. Numeric...
متن کاملFinite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients
In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...
متن کاملNumerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type
In this paper, we have proposed a numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided in...
متن کاملOn the Behavior of Combination High-Order Compact Approximations with Preconditioned Methods in the Diffusion-Convection Equation
In this paper, a family of high-order compact finite difference methods in combination preconditioned methods are used for solution of the Diffusion-Convection equation. We developed numerical methods by replacing the time and space derivatives by compact finitedifference approximations. The system of resulting nonlinear finite difference equations are solved by preconditioned Krylov subspace m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 215 شماره
صفحات -
تاریخ انتشار 2010