Radon Transforms on Affine Grassmannians

نویسنده

  • BORIS RUBIN
چکیده

We develop an analytic approach to the Radon transform f̂(ζ) = ∫ τ⊂ζ f(τ), where f(τ) is a function on the affine Grassmann manifold G(n, k) of k-dimensional planes in Rn, and ζ is a k′-dimensional plane in the similar manifold G(n, k′), k′ > k. For f ∈ Lp(G(n, k)), we prove that this transform is finite almost everywhere on G(n, k′) if and only if 1 ≤ p < (n− k)/(k′− k), and obtain explicit inversion formulas. We establish correspondence between Radon transforms on affine Grassmann manifolds and similar transforms on standard Grassmann manifolds of linear subspaces of Rn+1. It is proved that the dual Radon transform can be explicitly inverted for k + k′ ≥ n − 1, and interpreted as a direct, “quasi-orthogonal” Radon transform for another pair of affine Grassmannians. As a consequence we obtain that the Radon transform and the dual Radon transform are injective simultaneously if and only if k + k′ = n−1. The investigation is carried out for locally integrable and continuous functions satisfying natural weak conditions at infinity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radon transforms of Constructible functions on Grassmann manifolds

In [14], P.Schapira obtained a formula for RS in the general situation. This formula gives an inversion formula for the Radon transform of constructible functions from a real projective space to its dual in the case when the whole dimension is odd. We can, that is, reconstruct a constructible function φ on the projective space from its Radon transform RS(φ). This topological meaning is that we ...

متن کامل

The Gaussian Radon Transform in Classical Wiener Space*

We study the Gaussian Radon transform in the classical Wiener space of Brownian motion. We determine explicit formulas for transforms of Brownian functionals specified by stochastic integrals. A Fock space decomposition is also established for Gaussian measure conditioned to closed affine subspaces in Hilbert spaces.

متن کامل

On Quiver Varieties and Affine Grassmannians of Type A

We construct Nakajima’s quiver varieties of type A in terms of affine Grassmannians of type A. This gives a compactification of quiver varieties and a decomposition of affine Grassmannians into a disjoint union of quiver varieties. Consequently, singularities of quiver varieties, nilpotent orbits and affine Grassmannians are the same in type A. The construction also provides a geometric framewo...

متن کامل

Radon Transform on Real, Complex and Quaternionic Grassmannians

LetGn,k(K) be the Grassmannian manifold of k-dimensional K-subspaces in K where K = R,C,H is the field of real, complex or quaternionic numbers. For 1 ≤ k ≤ k ≤ n − 1 we define the Radon transform (Rf)(η), η ∈ Gn,k′(K), for functions f(ξ) on Gn,k(K) as an integration over all ξ ⊂ η. When k+ k ≤ n we give an inversion formula in terms of the G̊arding-Gindikin fractional integration and the Cayley...

متن کامل

A method for the estimation and recovering from general affine transforms in digital watermarking applications

An important problem constraining the practical exploitation of robust watermarking technologies is the low robustness of the existing algorithms against geometrical distortions such as rotation, scaling, cropping, translation, change of aspect ratio and shearing. All these attacks can be uniquely described by general affine transforms. In this work, we propose a robust estimation method using ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004