Evidence for partial quenching of orbital angular momentum upon complex formation in the infrared spectrum of OH-acetylene.
نویسندگان
چکیده
The entrance channel leading to the addition reaction between the hydroxyl radical and acetylene has been examined by spectroscopic characterization of the asymmetric CH stretching band of the pi-hydrogen bonded OH-acetylene reactant complex. The infrared action spectrum observed at 3278.6 cm(-1) (origin) consists of seven peaks of various intensities and widths, and is very different from those previously reported for closed-shell HF/HCl-acetylene complexes. The unusual spectrum arises from a partial quenching of the OH orbital angular momentum in the complex, which in turn is caused by a significant splitting of the OH monomer orbital degeneracy into (2)A(') and (2)A(") electronic states. The magnitude of the (2)A(')-(2)A(") splitting as well as the A rotational constant for the OH-acetylene complex are determined from the analysis of this b-type infrared band. The most populated OH product rotational state, j(OH)=9/2, is consistent with intramolecular vibrational energy transfer to the nu2 C triple bonded C stretching mode of the departing acetylene fragment. The lifting of the OH orbital degeneracy and partial quenching of its electronic orbital angular momentum indicate that the electronic changes accompanying the evolution of reactants into products have begun to occur in the reactant complex.
منابع مشابه
Study on Generation of Higher Order Orbital Angular Momentum Modes and Parameters Affecting the Vortex
In this manuscript, higher-order Orbital Angular Momentum (OAM) modes and parameters affecting vortex in the radiation pattern have been studied. A uniform circular array resonating at 10 GHz frequency is formed using eight identical rectangular patch antennas. Three uniform circular arrays are analyzed, simulated, and fabricated for OAM modes 0, +1, and -1 respectively. The higher-order OAM mo...
متن کاملPartial acetylene hydrogenation over commercial Pd-Ag/α-Al2O3 catalyst promoted by ionic liquid
1-butyl-3-methyl imidazolinium hydroxide ionic liquid (BMIm[OH]) is loaded on commercial low surface area Pd-Ag/α-Al2O3 solid catalyst to enhance higher selectivity of acetylene partial hydrogenation. Different experimental techniques such as atomic absorption spectroscopy, surface area measurement and gas chromatography have been utilized to characterize chemical, structural and catalytic pro...
متن کاملMeasurement of the orbital-angular-momentum spectrum of fields with partial angular coherence using double-angular-slit interference
We implement an interferometric method using two angular slits to measure the orbital-angular-momentum (OAM) mode spectrum of a field with partial angular coherence. As the angular separation of the slits changes, an interference pattern for a particular OAM mode is obtained. The visibility of this interference pattern as a function of angular separation is equivalent to the angular correlation...
متن کاملSpectroscopic, Docking and Molecular Dynamics Simulation Studies on the Interaction of Etofylline and Human Serum Albumin
The purpose of this study is to investigate the interaction of Etofylline as an established drug for asthma remedy, with the major transport protein in human blood circulation, the human serum albumin (HSA). In this respect, the fluorescence and circular dichroism (CD) spectroscopy techniques, along with the molecular docking and molecular dynamics simulation methods were employed. Analysis of ...
متن کاملMeasuring the complex orbital angular momentum spectrum and spatial mode decomposition of structured light beams
Light beams carrying orbital angular momentum are key resources in modern photonics. In many applications, the ability to measure the complex spectrum of structured light beams in terms of these fundamental modes is crucial. Here we propose and experimentally validate a simple method that achieves this goal by digital analysis of the interference pattern formed by the light beam and a reference...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 121 12 شماره
صفحات -
تاریخ انتشار 2004