Using modern plant trait relationships between observed and theoretical maximum stomatal conductance and vein density to examine patterns of plant macroevolution

نویسندگان

  • Jennifer C. McElwain
  • Charilaos Yiotis
  • Tracy Lawson
چکیده

Understanding the drivers of geological-scale patterns in plant macroevolution is limited by a hesitancy to use measurable traits of fossils to infer palaeoecophysiological function. Here, scaling relationships between morphological traits including maximum theoretical stomatal conductance (gmax ) and leaf vein density (Dv ) and physiological measurements including operational stomatal conductance (gop ), saturated (Asat ) and maximum (Amax ) assimilation rates were investigated for 18 extant taxa in order to improve understanding of angiosperm diversification in the Cretaceous. Our study demonstrated significant relationships between gop , gmax and Dv that together can be used to estimate gas exchange and the photosynthetic capacities of fossils. We showed that acquisition of high gmax in angiosperms conferred a competitive advantage over gymnosperms by increasing the dynamic range (plasticity) of their gas exchange and expanding their ecophysiological niche space. We suggest that species with a high gmax (> 1400 mmol m(-2) s(-1) ) would have been capable of maintaining a high Amax as the atmospheric CO2 declined through the Cretaceous, whereas gymnosperms with a low gmax would experience severe photosynthetic penalty. Expansion of the ecophysiological niche space in angiosperms, afforded by coordinated evolution of high gmax , Dv and increased plasticity in gop , adds further functional insights into the mechanisms driving angiosperm speciation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acclimation to humidity modifies the link between leaf size and the density of veins and stomata.

The coordination of veins and stomata during leaf acclimation to sun and shade can be facilitated by differential epidermal cell expansion so large leaves with low vein and stomatal densities grow in shade, effectively balancing liquid- and vapour-phase conductances. As the difference in vapour pressure between leaf and atmosphere (VPD) determines transpiration at any given stomatal density, we...

متن کامل

Stem growth habit affects leaf morphology and gas exchange traits in soybean.

BACKGROUNDS AND AIMS The stem growth habit, determinate or indeterminate, of soybean, Glycine max, varieties affects various plant morphological and developmental traits. The objective of this study is to identify the effect of stem growth habit in soybean on the stomatal conductance of single leaves in relation to their leaf morphology in order to better understand the ecological and agronomic...

متن کامل

Effect of Irrigation Levels and Plant Growth Promoting Rhizobacteria on Yield, Some Physiological and Biochemical Indices of Rapeseed (Brassica napus L.)

In order to study the effect of irrigation levels and plant growth promoting rhizobacteria on yield, some physiological and biochemical indices of rapeseed, a factorial experiment was conducted based on randomized complete block design with three replications in Agricultural Research Station of Ardabil, Ardabil, Iran in 2016. The factors included in the experiment were irrigation in three level...

متن کامل

Leaf Hydraulic Architecture and Stomatal Conductance: A Functional Perspective.

The structure of leaf vasculature viewed over a broad phylogenetic scale from lycophytes to eudicots correlates with stomatal conductance, providing the basis for the hypothesis that increasing vein density drove the evolution of high fluxes in angiosperms. Yet, the relationship between vascular geometry and gas fluxes breaks down at finer phylogenetic scales. In this Update, we derive a simple...

متن کامل

The effect of spraying of methyl jasmonate and 24-epi-brassinolide on photosynthesis, chlorophyll fluorescence and leaf stomatal traits in black mustard (Brassica nigra L.) under salinity stress

Methyl jasmonate and Epi-brassinolide as plant growth regulators have significant biological effects on plant growth, including increased tolerance to salt stress in plants. In this study, the effects of salinity stress and its interaction with methyl jasmonate and Epi-brassinolide on chlorophyll concentration, rate of photosynthesis, transpiration, stomatal conductance and resistance and chlor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 209  شماره 

صفحات  -

تاریخ انتشار 2016