ICESat laser altimeter measurement time validation system

نویسنده

  • L A Magruder
چکیده

NASA launched its Ice, Cloud and Land Elevation Satellite (ICESat) in January 2003. The primary goal of this laser altimeter mission is to provide determination of volumetric changes in the ice sheets, specifically in Antarctica and Greenland. The instrument performance requirements are driven by the scientific goal of determining a change in elevation on the centimetre level over the course of a year’s time. One important aspect of the altimeter data is the time of measurement, or bounce time, associated with each laser shot, as it is an important factor that assists in revealing the temporal changes in the surface (land/ice/sea) characteristics. In order to provide verification that the laser bounce time is accurately being determined, a ground-based detector system has been developed. The ground-based system methodology time-tags the arrival of the transmitted photons on the surface of the Earth with an accuracy of 0.1 ms. The timing software and hardware that will be used in the ground-based system has been developed and extensively tested. One particular test utilized an airborne laser equipped to produce a similar signal to that of ICESat. The overflight of the detectors by the aircraft was successful in that the signals were detected by the electro-optical devices and appropriately time-tagged with the timing hardware/software. There are many calibration and validation activities planned with the intention to help resolve the validity of the ICESat data, but pre-launch analysis suggests the ground-based system will provide the most accurate recovery of timing bias.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In situ timing and pointing verification of the ICESat altimeter using a ground-based system

[1] To provide validation of the ICESat laser altimeter time of measurement and geolocation, a ground-based technique was implemented at White Sands Space Harbor (WSSH), during the Laser 2a and 3a operational periods. The activities used an electro-optical detection system and a passive array of corner cube retro reflectors (CCR). The detectors and the CCRs were designed to provide an independe...

متن کامل

ICESat validation of SRTM C-band digital elevation models

[1] The Geoscience Laser Altimeter System (GLAS) on the Ice, Cloud, and land Elevation Satellite (ICESat) provides a globally-distributed data set well suited for evaluating the vertical accuracy of Shuttle Radar Topography Mission (SRTM) digital elevation models (DEMs). The horizontal error (2.4 ± 7.3 m) and vertical error (0.04 ± 0.13 m per degree of incidence angle) for the ICESat data used ...

متن کامل

Simulation of Full-waveform Laser Altimeter Echo Waveform

Change of globe surface height is an important factor to study human living environment. The Geoscience Laser Altimeter System (GLAS) on ICESat is the first laser-ranging instrument for continuous global observations of the Earth. In order to have a comprehensive understanding of full-waveform laser altimeter, this study simulated the operating mode of ICESat and modeled different terrains’ (pl...

متن کامل

ICESat’s new perspective on ice shelf rifts: The vertical dimension

[1] The small footprint ( 70 m) and 172 m alongtrack spacing of the Geoscience Laser Altimeter System (GLAS) on the Ice, Cloud and land Elevation Satellite (ICESat) provides unprecedented horizontal resolution for a satellite altimeter. This enables ICESat to map many previously unresolved features on ice shelves, such as crevasses, rifts, grounding zones and ice fronts. We present examples of ...

متن کامل

Full Waveform Analysis: Icesat Laser Data for Land Cover Classification

Analysis of the full waveform return pulse of laser altimeter systems is expected to increase the possibilities and accuracy in well-known applications of laser altimetry like DTM generation, forestry and earth surface analysis. NASA’s ICESat Geoscience Laser Altimeter System (GLAS) was launched in 2003 and acquires full waveform data along profiles covering the entire earth. In this study, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003