Around the orbit equivalence theory of the free groups , cost and ` 2 Betti numbers ∗
نویسنده
چکیده
Abstract: The goal of this series of lectures is to present an overview of the theory of orbit equivalence, with a particular focus on the probability measure preserving actions of the free groups. I will start by giving the basis of the theory of orbit equivalence and explain the theory of cost. In particular, prove such statements as the induction formula and the computation of the cost of free actions of some countable groups, including free groups. This will be related to the fundamental group of equivalence relations. I intend to present Abert-Nikolov theorem relating the cost of profinite actions to the rank gradient of the associated chain of subgroups. I will consider a recent result of F. Le Maître establishing a perfect connection between the cost of a probability measure preserving action with the number of topological generators of the associated full group. I shall also discuss the number of non orbit equivalent actions of countable groups.
منابع مشابه
L2-betti Numbers of Discrete Measured Groupoids
There are notions of L2-Betti numbers for discrete groups (Cheeger–Gromov, Lück), for type II 1-factors (recent work of Connes-Shlyakhtenko) and for countable standard equivalence relations (Gaboriau). Whereas the first two are algebraically defined using Lück’s dimension theory, Gaboriau’s definition of the latter is inspired by the work of Cheeger and Gromov. In this work we give a definition...
متن کامل-betti Numbers of Discrete Measured Groupoids
There are notions of L2-Betti numbers for discrete groups (CheegerGromov, Lück), for type II1-factors (recent work of Connes-Shlyakhtenko) and for countable standard equivalence relations (Gaboriau). Whereas the first two are algebraically defined using Lück’s dimension theory, Gaboriau’s definition of the latter is inspired by the work of Cheeger and Gromov. In this work we give a definition o...
متن کاملQuasi-isometry Invariance of Novikov-shubin Invariants for Amenable Groups
We use the notion of uniform measure equivalence to prove that the Novikov-Shubin invariants resp. the capacities of amenable groups are invariant under quasi-isometry. Further, we comment on the connection to Gaboriau’s theorem on the invariance of L-Betti numbers under orbit equivalence.
متن کاملAround the orbit equivalence theory of the free groups∗
Abstract: The goal of this series of lectures is to present an overview of the theory of orbit equivalence, with a particular focus on the probability measure preserving actions of the free groups. I will start by giving the basis of the theory of orbit equivalence and explain the theory of cost. In particular, prove such statements as the induction formula and the computation of the cost of fr...
متن کاملOn a special class of Stanley-Reisner ideals
For an $n$-gon with vertices at points $1,2,cdots,n$, the Betti numbers of its suspension, the simplicial complex that involves two more vertices $n+1$ and $n+2$, is known. In this paper, with a constructive and simple proof, wegeneralize this result to find the minimal free resolution and Betti numbers of the $S$-module $S/I$ where $S=K[x_{1},cdots, x_{n}]$ and $I$ is the associated ideal to ...
متن کامل