Structural investigations on native collagen type I fibrils using AFM.
نویسندگان
چکیده
This study was carried out to determine the elastic properties of single collagen type I fibrils with the use of atomic force microscopy (AFM). Native collagen fibrils were formed by self-assembly in vitro characterized with the AFM. To confirm the inner assembly of the collagen fibrils, the AFM was used as a microdissection tool. Native collagen type I fibrils were dissected and the inner core uncovered. To determine the elastic properties of collagen fibrils the tip of the AFM was used as a nanoindentor by recording force-displacement curves. Measurements were done on the outer shell and in the core of the fibril. The structural investigations revealed the banding of the shell also in the core of native collagen fibrils. Nanoindentation experiments showed the same Young's modulus on the shell as well as in the core of the investigated native collagen fibrils. In addition, the measurements indicate a higher adhesion in the core of the collagen fibrils compared to the shell.
منابع مشابه
Alginate-Collagen Fibril Composite Hydrogel
We report on the synthesis and the mechanical characterization of an alginate-collagen fibril composite hydrogel. Native type I collagen fibrils were used to synthesize the fibrous composite hydrogel. We characterized the mechanical properties of the fabricated fibrous hydrogel using tensile testing; rheometry and atomic force microscope (AFM)-based nanoindentation experiments. The results show...
متن کاملAtomic Force Microscopy for High Resolution Imaging of Collagen Fibrils—A New Technique to Investigate Collagen Structure in Historic Bone Tissues
In this study, we present a new technique for the structural analysis of the collagen compound in historic tissues. We therefore used atomic force microscopy (AFM), a new high resolution technique which offers significant information on the fibrillar assembly and ultrastructure of collagen fibrils, which may provide insight into both the physiological and eventually pathogenic pattern of collag...
متن کاملEffects of tissue hydration on nanoscale structural morphology and mechanics of individual Type I collagen fibrils in the Brtl mouse model of Osteogenesis Imperfecta.
Type I collagen is the most abundant protein in mammals, and is a vital part of the extracellular matrix for numerous tissues. Despite collagen's importance, little is known about its nanoscale morphology in tissues and how morphology relates to mechanical function. This study probes nanoscale structure and mechanical properties of collagen as a function of disease in native hydrated tendons. W...
متن کاملIn vitro Synthesis of Native, Fibrous Long Spacing and Segmental Long Spacing Collagen
Collagen fibrils are present in the extracellular matrix of animal tissue to provide structural scaffolding and mechanical strength. These native collagen fibrils have a characteristic banding periodicity of ~67 nm and are formed in vivo through the hierarchical assembly of Type I collagen monomers, which are 300 nm in length and 1.4 nm in diameter. In vitro, by varying the conditions to which ...
متن کاملUltrastructural studies on the collagen of the marine sponge Chondrosia reniformis Nardo.
The ultrastructure of isolated fibrils of Chondrosia reniformis sponge collagen was investigated by collecting characteristic data, such as fibril thickness, width, D-band periodicity, and height modulation, using atomic force microscopy (AFM) and transmission electron microscopy (TEM). Therefore an adapted pre-processing of the insoluble collagen into homogeneous suspensions using neutral buff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical and biophysical research communications
دوره 354 1 شماره
صفحات -
تاریخ انتشار 2007