Microbe–mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas)
نویسندگان
چکیده
Microbialites (benthic microbial carbonate deposits) were discovered in a hypersaline alkaline lake on Eleuthera Island (Bahamas). From the edge towards the centre of the lake, four main zones of precipitation could be distinguished: (1) millimetre-sized clumps of Mg-calcite on a thin microbial mat; (2) thicker and continuous carbonate crusts with columnar morphologies; (3) isolated patches of carbonate crust separated by a dark non-calcified gelatinous mat; and (4) a dark microbial mat without precipitation. In thin section, the precipitate displayed a micropeloidal structure characterized by micritic micropeloids (strong autofluorescence) surrounded by microspar and spar cement (no fluorescence). Observations using scanning electron microscopy (SEM) equipped with a cryotransfer system indicate that micrite nucleation is initiated within a polymer biofilm that embeds microbial communities. These extracellular polymeric substances (EPS) are progressively replaced with high-Mg calcite. Discontinuous EPS calcification generates a micropeloidal structure of the micrite, possibly resulting from the presence of clusters of coccoid or remnants of filamentous bacteria. At high magnification, the microstructure of the initial precipitate consists of 200– 500 nm spheres. No precipitation is observed in or on the sheaths of cyanobacteria, and only a negligible amount of precipitation is directly associated with the well-organized and active filamentous cyanobacteria (in deeper layers of the mat), indicating that carbonate precipitation is not associated with CO2 uptake during photosynthesis. Instead, the precipitation occurs at the uppermost layer of the mat, which is composed of EPS, empty filamentous bacteria and coccoids (Gloeocapsa spp.). Two-dimensional mapping of sulphate reduction shows high activity in close association with the carbonate precipitate at the top of the microbial mat. In combination, these findings suggest that net precipitation of calcium carbonate results from a temporal and spatial decoupling of the various microbial metabolic processes responsible for CaCO3 precipitation and dissolution. Theoretically, partial degradation of EPS by aerobic heterotrophs or UV fuels sulphate-reducing activity, which increases alkalinity in microdomains, inducing CaCO3 precipitation. This degradation could also be responsible for EPS decarboxylation, which eliminates Ca-binding capacity of the EPS and releases Ca ions that were originally bound by carboxyl groups. At the end of these processes, the EPS biofilm is calcified and exhibits a micritic micropeloidal structure. The EPS-free precipitate subsequently serves as a substrate for physico-chemical precipitation of spar cement from the alkaline water of the lake. The micropeloidal structure has an intimate mixture of Sedimentology (2004) 51, 1–21 doi: 10.1111/j.1365-3091.2004.00649.x 2004 International Association of Sedimentologists 1 micrite and microspar comparable to microstructures of some fossil
منابع مشابه
Microbial species richness and metabolic activities in hypersaline microbial mats: insight into biosignature formation through lithification.
Microbial mats in the hypersaline lake of Salt Pan, Eleuthera, Bahamas, display a gradient of lithification along a transect from the center to the shore of the lake. These mats exist under similar geochemical conditions, with light quantity and quality as the sole major environmental difference. Therefore, we hypothesized that the microbial community may be driving the differences in lithifica...
متن کاملMineralogy and Microbial Diversity of the Microbialites in the Hypersaline Storr's Lake, the Bahamas.
Microbialites found in the low-light-intensity, hypersaline waters of Storr's Lake (SL), San Salvador Island, the Bahamas, were investigated with respect to their morphology, mineralogy, and microbial diversity. Previously described microbialite morphologies, as well as a newly identified "multi-cuspate" morphology, were observed at various depths. Electron microscopy analysis revealed the pres...
متن کاملProkaryotic diversity and biogeochemical characteristics of benthic microbial ecosystems at La Brava, a hypersaline lake at Salar de Atacama, Chile
Benthic microbial ecosystems of Laguna La Brava, Salar de Atacama, a high altitude hypersaline lake, were characterized in terms of bacterial and archaeal diversity, biogeochemistry, (including O2 and sulfide depth profiles and mineralogy), and physicochemical characteristics. La Brava is one of several lakes in the Salar de Atacama where microbial communities are growing in extreme conditions,...
متن کاملSr concentrations and isotope ratios as tracers of ground-water circulation in carbonate platforms: Examples from San Salvador Island and Long Island, Bahamas
The depth to which seawater and fresh water circulate through modern carbonate platforms may be estimated with Sr/Sr isotope ratios of dissolved Sr that is enriched through carbonate mineral dissolution and recrystallization. In 23 water samples from onshore San Salvador Island and Long Island, Bahamas, carbonate mineral dissolution and aragonite-to-calcite transformations elevate Sr concentrat...
متن کاملCo-precipitation of Dissolved Organic Matter by Calcium Carbonate in Pyramid Lake, Nevada
Our previous research has demonstrated that dissolved organic matter (DOM) influences calcium carbonate mineral formation in surface and ground water. To better understand DOM mediation of carbonate precipitation and DOM co-precipitation and/or incorporation with carbonate minerals, we characterized the content and speciation of DOM in carbonate minerals and in the lake water of Pyramid Lake, N...
متن کامل