Functional cardiomyocytes derived from human induced pluripotent stem cells.
نویسندگان
چکیده
Human induced pluripotent stem (iPS) cells hold great promise for cardiovascular research and therapeutic applications, but the ability of human iPS cells to differentiate into functional cardiomyocytes has not yet been demonstrated. The aim of this study was to characterize the cardiac differentiation potential of human iPS cells generated using OCT4, SOX2, NANOG, and LIN28 transgenes compared to human embryonic stem (ES) cells. The iPS and ES cells were differentiated using the embryoid body (EB) method. The time course of developing contracting EBs was comparable for the iPS and ES cell lines, although the absolute percentages of contracting EBs differed. RT-PCR analyses of iPS and ES cell-derived cardiomyocytes demonstrated similar cardiac gene expression patterns. The pluripotency genes OCT4 and NANOG were downregulated with cardiac differentiation, but the downregulation was blunted in the iPS cell lines because of residual transgene expression. Proliferation of iPS and ES cell-derived cardiomyocytes based on 5-bromodeoxyuridine labeling was similar, and immunocytochemistry of isolated cardiomyocytes revealed indistinguishable sarcomeric organizations. Electrophysiology studies indicated that iPS cells have a capacity like ES cells for differentiation into nodal-, atrial-, and ventricular-like phenotypes based on action potential characteristics. Both iPS and ES cell-derived cardiomyocytes exhibited responsiveness to beta-adrenergic stimulation manifest by an increase in spontaneous rate and a decrease in action potential duration. We conclude that human iPS cells can differentiate into functional cardiomyocytes, and thus iPS cells are a viable option as an autologous cell source for cardiac repair and a powerful tool for cardiovascular research.
منابع مشابه
P-50: Elongating and Elongated Spermatids Manufactured In Vitro from Non-Human Primate Pluripotent Stem Cells
Background: We have recently shown that human embryonic (hESCs) and induced pluripotent stem cells (hiPSCs) can differentiate into advanced spermatogenic cells including round spermatids by in vitro culture (Easley et al., Direct differentiation of human pluripotent stem cells into haploid spermatogenic cells. Cell Reports 2, 440-446 2012) and also, in collaboration, that rhesus spermatogonial ...
متن کاملIsolation and Characterization of Human Induced Pluripotent Stem Cells-Derived Mesenchymal Progenitors
Purpose: Isolating human induced pluripotent stem cells (hiPS)-derived mesenchymal progenitors as a new source of mesenchymal cells which can differentiate into different lineages like adipose and bone. Materials and Methods: After 7 days of hiPS1 culture on matrigle coated dishes, spindle like cells around colonies were removed by cell scraper. These cells that had mesenchymal like morphology ...
متن کاملA Quick update from the Past to Current Status of Human Pluripotent Stem Cell-derived Hepatocyte culture systems
Pluripotent stem cells (PSCs) may be offered as an unlimited cell source for the hepatocyte generation. The generation of hepatocytes from stem cells in vitro would provide an alternative cell source for applications in drug discovery and cell transplantation. In this review, we discuss different approaches to generate pluripotent stem cell-derived hepatocytes, advantages, limitations for each ...
متن کاملFingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors
Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...
متن کاملGeneration and Characterization of Functional Cardiomyocytes Derived from Human T Cell-Derived Induced Pluripotent Stem Cells
Induced pluripotent stem cells (iPSCs) have been proposed as novel cell sources for genetic disease models and revolutionary clinical therapies. Accordingly, human iPSC-derived cardiomyocytes are potential cell sources for cardiomyocyte transplantation therapy. We previously developed a novel generation method for human peripheral T cell-derived iPSCs (TiPSCs) that uses a minimally invasive app...
متن کاملDifferentiation Potential of Nestin (+) and Nestin (-) Cells Derived from Human Bone Marrow Mesenchymal Stem Cells into Functional Insulin Producing Cells
The feasibility of isolating and manipulating mesenchymal stem cells (MSCs) from human patients provides hope for curing numerous disease and disorders. Recent phenotypic analysis showed heterogeneity of MSCs. A nestin progenitor cell is a subpopulation within MSCs which plays a role in pancreas regeneration during embryogenesis. This study aimed to separate nestin (+) cells from human bone mar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 104 4 شماره
صفحات -
تاریخ انتشار 2009