Carbon nanotube nucleation driven by catalyst morphology dynamics.
نویسندگان
چکیده
In situ observation of the carbon nanotube nucleation process accompanied by dynamic reconstruction of the catalyst particle morphology is considered within a thermodynamic approach. It reveals the driving force for the detachment of the sp(2)-carbon cap, so-called lift-off-a crucial event in nanotube growth. A continuum model and detailed atomistic calculations identify the critical factors in the lift-off process: (i) catalyst surface energy, affected by the chemisorbed carbon atoms at the exterior surface of the catalyst, exposed to the carbon feedstock; and (ii) the emergence of a pristine, high-energy facet under the sp(2)-carbon dome. This further allows one to evaluate the range of carbon feedstock chemical potential, where the lift-off process occurs, to be followed by emergence of single-walled nanotube, and provides insights into observed catalyst morphology oscillations leading to formation of multiwalled carbon nanotubes.
منابع مشابه
Nanotube nucleation versus carbon-catalyst adhesion--probed by molecular dynamics simulations.
Catalytic nucleation of carbon nanotubes (CNTs) remains a challenge for the theory: Which factors and forces decide if the gathering sp(2)-network of atoms will adhere to the catalyst particle and fully cover it or the graphitic cap will liberate itself to extend into a hollow filament? This intimate mechanism cannot be seen in experiment, yet it can be investigated through comprehensive molecu...
متن کاملThe role of precursor gases on the surface restructuring of catalyst films during carbon nanotube growth
Catalyst films undergo considerable surface morphology restructuring prior to carbon nanotube nucleation, deeply influencing the nanostructures obtained. Here we study the influence of different gaseous atmospheres on the structure of thin Fe films. The morphology is influenced by process temperature and substrate interactions and varying the gas type and pressure can control the average cataly...
متن کاملInterplay of wetting and elasticity in the nucleation of carbon nanotubes.
We use molecular dynamics and simple thermodynamic arguments to model the interaction between catalyst nanoparticles and carbon nanotube caps, and we illustrate how the competition between cap strain energy and adhesion plays a role in the lifting of these caps from the catalyst surface prior to tube elongation. Given a particular cap structure, we show that there is a lower bound on the cataly...
متن کاملInsights into carbon nanotube nucleation: Cap formation governed by catalyst interfacial step flow
In order to accommodate an increasing demand for carbon nanotubes (CNTs) with desirable characteristics one has to understand the origin of helicity of their structures. Here, through in situ microscopy we demonstrate that the nucleation of a carbon nanotube is initiated by the formation of the carbon cap. Nucleation begins with the formation of a graphene embryo that is bound between opposite ...
متن کاملNucleation and reshaping thermodynamics of Ni as catalyst of carbon nanotubes
A quantitative model describing the nucleation, energy, and diffusion restraints in reshaping of Ni nanoparticles as a catalyst of carbon nanotubes is developed by introducing the size-dependent thermodynamic quantities in the classical nucleation theory and the diffusion laws. The result from our model calculations is in good agreement with that of the latest time-resolved, high-resolution in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 5 12 شماره
صفحات -
تاریخ انتشار 2011