Tool wear monitoring in bandsawing using neural networks and Taguchi’s design of experiments

نویسنده

  • Haci Saglam
چکیده

The bandsawing as a multi-point cutting operation is the preferred method for cutting off raw materials in industry. Although cutting off with bandsaw is very old process, research efforts are very limited compared to the other cutting process. Appropriate online tool condition monitoring system is essential for sophisticated and automated machine tools to achieve better tool management. Tool wear monitoring models using artificial neural network are developed to predict the tool wear during cutting off the raw materials (American Iron and Steel Institute 1020, 1040 and 4140) by bandsaw. Based on a continuous data acquisition of cutting force signals, it is possible to estimate or to classify certain wear parameters by means of neural networks thanks to reasonably quick data-processing capability. The multi-layered feed forward artificial neural network (ANN) system of a 6×9×1 structure based on cutting forces was trained using error back-propagation training algorithm to estimate tool wear in bandsawing. The data used for the training and checking of the network were derived from the experiments according to the principles of Taguchi design of experiments planned as L27. The factors considered as input in the experiment were the feed rate, the cutting speed, the engagement length and material hardness. 3D surface plots are generated using ANN model to study the interaction effects of cutting conditions on sawblade. The analysis shows that cutting length, hardness and cutting speed have significant effect on tooth wear, respectively, while feed rate has less effect. In this study, the details of experimentation and ANN application to predict tooth wear have been presented. The system shows that there is close match between the flank wear estimated and measured directly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predictions of Tool Wear in Hard Turning of AISI4140 Steel through Artificial Neural Network, Fuzzy Logic and Regression Models

The tool wear is an unavoidable phenomenon when using coated carbide tools during hard turning of hardened steels. This   work focuses on the prediction of tool wear using regression analysis and artificial neural network (ANN).The work piece taken into consideration is AISI4140 steel hardened to 47 HRC. The models are developed from the results of experiments, which are carried out based on De...

متن کامل

Development of an intelligent system for tool wear monitoring applying neural networks

Purpose: The objective of the researches presented in the paper is to investigate, in laboratory conditions, the application possibilities of the proposed system for tool wear monitoring in hard turning, using modern tools and artificial intelligence (AI) methods. Design/methodology/approach: On the basic theoretical principles and the use of computing methods of simulation and neural network t...

متن کامل

Artificial Neural Network Predictive Modeling of Uncoated Carbide Tool Wear When Turning Nst 37.2 Steel

We report the development of a predictive model based on artificial neural network (ANN) for the estimation of flank and nose wear of uncoated carbide inserts during orthogonal turning of NST (Nigerian steel) 37.2. Turning experiments were conducted at different cutting conditions on a M300 Harrison lathe using Sandvic Coromant uncoated carbide inserts with ISO designations SNMA 120406 using fu...

متن کامل

Forecasting S&P 500 index using artificial neural networks and design of experiments

The main objective of this research is to forecast the daily direction of Standard & Poor's 500 (S&P 500) index using an artificial neural network (ANN). In order to select the most influential features (factors) of the proposed ANN that affect the daily direction of S&P 500 (the response), design of experiments are conducted to determine the statistically significant factors among 27 potential...

متن کامل

Optimization of Spindle loading and Tool Wear for CNC Turning Machine by Using Intelligent System

Intelligent knowledge based system (IKBS) is developed for optimizing dry CNC turning process using Taguchi method, CNC Machine, EN19 steel as the work piece material, andCutting Insert. Tool wear and spindle loading which are the machining parameters, spindle speed, feed rate, and depth of cut, areoptimized through the intelligent knowledge based system (IKBS). The experimental CNC turning mac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011