A Mathematical Model of Mechanotransduction
نویسنده
چکیده
This article reviews the mechanical bidomain model, a mathematical description how the extracellular matrix and intracellular cytoskeleton are coupled by integrin proteins. The fundamental hypothesis is that differences between intracellular and extracellular displacements drive mechanotransduction. A onedimensional example illustrates the model, which is then extended to two dimensions. In several cases the equations are solved analytically, illustrating how displacements divide into two parts: monodomain displacements are identical in both spaces and therefore do not contribute to mechanotransduction, whereas bidomain displacements cause mechanotransduction. A new length constant depends on the intracellular and extracellular shear moduli and the integrin spring constant, and bidomain effects often occur within a few length constants of the tissue edge. Numerical methods for solving the model equations are being developed. Precursors to the model and potential applications are discussed. The bidomain model may be applicable to cardiac remodeling, blood vessel regulation, tissue engineering, stem cell differentiation, cancer biology, and development.
منابع مشابه
A mathematical model for mechanotransduction at the early steps of suture formation
Growth and patterning of craniofacial sutures are subjected to the effects of mechanical stress. Mechanotransduction processes occurring at the margins of the sutures are not precisely understood. Here, we propose a simple theoretical model based on the orientation of collagen fibres within the suture in response to local stress. We demonstrate that fibre alignment generates an instability lead...
متن کاملForce meets chemistry: analysis of mechanochemical conversion in focal adhesions using fluorescence recovery after photobleaching.
Mechanotransduction--the process by which mechanical forces are converted into changes of intracellular biochemistry--is critical for normal cell and tissue function. Integrins facilitate mechanochemical conversion by transferring physical forces from the extracellular matrix, across the cell surface, and to cytoskeletal-associated proteins within focal adhesions. It is likely that force alters...
متن کاملA unifying framework underlying mechanotransduction in the somatosensory system.
Rodents use their whiskers to sense their surroundings. As most of the information available to the somatosensory system originates in whiskers' primary afferents, it is essential to understand the transformation of whisker motion into neuronal activity. Here, we combined in vivo recordings in anesthetized rats with mathematical modeling to ascertain the mechanical and electrical characteristic...
متن کاملEvaluation of CD98 Expression in Normal and Osteoarthritic Human Articular Chondrocytes
Background: Recent studies have provided evidence that integrins play roles in recognition of mechanical stimuli and its translation into a cellular response. Integrin signaling may be regulated by a number of mechanisms including accessory proteins such as CD98 (4F2 antigen). Objectives: To determine CD98 expression by human articular chondrocytes and its involvement in human articular mechano...
متن کاملA mathematical model for mechanotransduction at the early steps of suture formation.
Growth and patterning of craniofacial sutures is subjected to the effects of mechanical stress. Mechanotransduction processes occurring at the margins of the sutures are not precisely understood. Here, we propose a simple theoretical model based on the orientation of collagen fibres within the suture in response to local stress. We demonstrate that fibre alignment generates an instability leadi...
متن کامل