Generic gamma correction for accuracy enhancement in fringe-projection profilometry.

نویسندگان

  • Thang Hoang
  • Bing Pan
  • Dung Nguyen
  • Zhaoyang Wang
چکیده

Fringe-projection profilometry is one of the most commonly used noncontact methods for acquiring the three-dimensional (3D) shape information of objects. In practice, the luminance nonlinearity caused by the gamma effect of a digital projector and a digital camera yields undesired fringe intensity changes, which substantially reduce the measurement accuracy. In this Letter, we present a robust and simple scheme to eliminate the intensity nonlinearity induced by the gamma effect by combining a universal phase-shifting algorithm with a gamma correction method. First, by using three-step and large-step phase-shifting techniques, the gamma value involved in the measurement system can be detected. Then, a gamma pre-encoding process is applied to the system for actual 3D shape measurements. With the proposed technique, high accuracy of measurement can be achieved with the conventional small-step phase-shifting algorithm. The validity of the technique is verified by experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyper-accurate flexible calibration technique for fringe-projection-based three-dimensional imaging

Fringe-projection-based (FPB) three-dimensional (3D) imaging technique has become one of the most prevalent methods for 3D shape measurement and 3D image acquisition, and an essential component of the technique is the calibration process. This paper presents a framework for hyper-accurate system calibration with flexible setup and inexpensive hardware. Owing to the crucial improvement in the ca...

متن کامل

Gamma-distorted fringe image modeling and accurate gamma correction for fast phase measuring profilometry.

In fast phase-measuring profilometry, phase error caused by gamma distortion is the dominant error source. Previous phase-error compensation or gamma correction methods require the projector to be focused for best performance. However, in practice, as digital projectors are built with large apertures, they cannot project ideal focused fringe images. In this Letter, a thorough theoretical model ...

متن کامل

Phase error correction based on Inverse Function Shift Estimation in Phase Shifting Profilometry using a digital video projector

Fringe Pattern Profilometry (FPP) is 3D surface measuring technique based on triangulation. The utilization of digital projection in FPP system introduces significant phase distortion for Phase Shifting Profilometry (PSP), because of the nonlinear response of digital video projectors, which is referred as gamma distortion. Considering that the distorted phase has a stable function for a referen...

متن کامل

Improved geometrical model of fringe projection profilometry.

The accuracy performance of fringe projection profilometry (FPP) depends on accurate phase-to-height (PTH) mapping and system calibration. The existing PTH mapping is derived based on the condition that the plane formed by axes of camera and projector is perpendicular to the reference plane, and measurement error occurs when the condition is not met. In this paper, a new geometric model for FPP...

متن کامل

Recent Advances in 3D Shape Measurement and Imaging Using Fringe Projection Technique

Three-dimensional (3D) shape measurement and imaging technique, for determining the 3D shape of objects, has emerged as an important tool for many applications, such as object detection, digital model generation, object replication, reverse engineering, rapid prototyping, product inspection, quality control, etc. As technologies evolve, there have been high demands for the 3D shape measurement ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics letters

دوره 35 12  شماره 

صفحات  -

تاریخ انتشار 2010