Shift, scaling and derivative properties for the discrete cosine transform

نویسندگان

  • Robert Reeves
  • Kurt Kubik
چکیده

A set of DCT domain properties for shifting and scaling by real amounts, and taking linear operations such as differentiation is described. The DCT coefficients of a sampled signal are subjected to a linear transform, which returns the DCT coefficients of the shifted, scaled and/or differentiated signal. The properties are derived by considering the inverse discrete transform as a cosine series expansion of the original continuous signal, assuming sampling in accordance with the Nyquist criterion. This approach can be applied in the signal domain, to give, for example, DCT based interpolation or derivatives. The same approach can be taken in decoding from the DCT to give, for example, derivatives in the signal domain. The techniques may prove useful in compressed domain processing applications, and are interesting because they allow operations from the continuous domain such as differentiation to be implemented in the discrete domain. An image matching algorithm illustrates the use of the properties, with improvements in computation time and matching quality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization

This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...

متن کامل

A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization

This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...

متن کامل

A brief survey of a DCT-Based Speech Enhancement System

Discrete Cosine Transform (DCT) has similar performance to the Karhunen-Loeve Transform (KLT) & same properties to the Discrete Fourier Transform (DFT). It is advantageous for speech enhancement as it provides better energy compaction capability. Though there is a perfectly stationary signal, frame to frame variations of DCT coefficients are observed. In pitch synchronous analysis DCT based spe...

متن کامل

A general construction of Reed-Solomon codes based on generalized discrete Fourier transform

In this paper, we employ the concept of the Generalized Discrete Fourier Transform, which in turn relies on the Hasse derivative of polynomials, to give a general construction of Reed-Solomon codes over Galois fields of characteristic not necessarily co-prime with the length of the code. The constructed linear codes  enjoy nice algebraic properties just as the classic one.

متن کامل

Matlab Implementation of Baseline JPEG Image Compression Using Hardware Optimized Discrete Cosine Transform

In this paper, modeling of optimized Discrete Cosine Transform (DCT) with reduced hardware and implementation of JPEG Image compression in MATLAB is presented. DCT is the heart of the JPEG image compression. The computation of DCT is hardware intensive and power consumption is also very high. In JPEG Image Compression pipeline, a quantizer follows the DCT. Such structural pipeline is advantageo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Signal Processing

دوره 86  شماره 

صفحات  -

تاریخ انتشار 2006