Decoding Binary Quadratic Residue codes Using the Euclidean Algorithm

نویسندگان

  • Pei-Yu Shih
  • Wen-Ku Su
  • Trieu-Kien Truong
  • Yaotsu Chang
چکیده

A simplified algorithm for decoding binary quadratic residue (QR) codes is developed in this paper. The key idea is to use the efficient Euclidean algorithm to determine the greatest common divisor of two specific polynomials which can be shown to be the error-locator polynomial. This proposed technique differs from the previous schemes developed for QR codes. It is especially simple due to the well-developed Euclidean algorithm. In this paper, an example using the proposed algorithm to decode the (41, 21, 9) quadratic residue code is given and a C++ program of the proposed algorithm has been executed successfully to run all correctable error patterns. The simulations of this new algorithm compared with the Berlekamp-Massey (BM) algorithm for the (71, 36, 11) and (79, 40, 15) quadratic residue codes are shown.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decoding of the Five-Error-Correcting Binary Quadratic Residue Codes

In this paper, a new efficient syndrome-weight decoding algorithm (NESWDA) is presented to decode up to five possible errors in a binary systematic (47, 24, 11) quadratic residue (QR) code. The main idea of NESWDA is based on the property cyclic codes together with the weight of syndrome difference. The advantage of the NESWDA decoding algorithm over the previous table look-up methods is that i...

متن کامل

Algebraic Decoding of Quadratic Residue Codes Using Berlekamp-Massey Algorithm

In this paper, an algebraic decoding method is proposed for the quadratic residue codes that utilize the Berlekamp-Massey algorithm. By a modification of the technique developed by He et al., one can express the unknown syndromes as functions of the known syndromes. The unknown syndromes are determined by an efficient algorithm also developed in this paper. With the appearance of unknown syndro...

متن کامل

Decoding the Ternary (23, 11, 9) Quadratic Residue Code

Quadratic residue (QR) codes are cyclic, nominally half-rate codes, that are powerful with respect to their error-correction capabilities. Decoding QR codes is in general a difficult task, but great progress has been made in the binary case since the work of Elia [1] and He et al. [2]. Decoding algorithms for certain nonbinary QR codes were proposed by Higgs and Humphreys in [3] and [4]. In [5]...

متن کامل

Algebraic Decoding of Two Quadratic Residue Codes Using Unknown Syndrome Representation

This paper addresses the problem of improving the unknown syndrome representations to develop algebraic decoding of the (17,9,5) and (23,12,7) binary quadratic residue codes up to true minimum distance, respectively. The proposed unknown syndrome representations are expressed as binary polynomials in terms of the single known syndrome, which is different from the known syndrome in [Chang-Lee, A...

متن کامل

Decoding Linear Block Codes Using a Priority-First Search : Performance Analysis and Suboptimal Version

An efficient maximum-likelihood soft-decision decoding algorithm for linear block codes using a generalized Dijkstra’s algorithm was proposed by Han, Hartmann, and Chen. In this correspondence we prove that this algorithm is efficient for most practical communication systems where the probability of error is less than 10 3 by finding an upper bound of the computational effort of the algorithm. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Inf. Sci. Eng.

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2009