The average distance property of classical Banach spaces II
نویسندگان
چکیده
A Banach space X has the average distance property (ADP) if there exists a unique real number r such that for each positive integer n and all x1, . . . , xn in the unit sphere of X there is some x in the unit sphere of X such that 1 n n ∑ k=1 ‖xk − x‖ = r. We show that lp does not have the average distance property if p > 2. This completes the study of the ADP for lp spaces.
منابع مشابه
A Class of Hereditarily $ell_p(c_0)$ Banach spaces
We extend the class of Banach sequence spaces constructed by Ledari, as presented in ''A class of hereditarily $ell_1$ Banach spaces without Schur property'' and obtain a new class of hereditarily $ell_p(c_0)$ Banach spaces for $1leq p<infty$. Some other properties of this spaces are studied.
متن کاملThe Banach Type Contraction for Mappings on Algebraic Cone Metric Spaces Associated with An Algebraic Distance and Endowed with a Graph
In this work, we define the notion of an algebraic distance in algebraic cone metric spaces defined by Niknam et al. [A. Niknam, S. Shamsi Gamchi and M. Janfada, Some results on TVS-cone normed spaces and algebraic cone metric spaces, Iranian J. Math. Sci. Infor. 9 (1) (2014), 71--80] and introduce some its elementary properties. Then we prove the existence and uniqueness of fixed point for a B...
متن کاملBanach Spaces with the 2-summing Property
A Banach space X has the 2-summing property if the norm of every linear operator from X to a Hilbert space is equal to the 2-summing norm of the operator. Up to a point, the theory of spaces which have this property is independent of the scalar eld: the property is self-dual and any space with the property is a nite dimensional space of maximal distance to the Hilbert space of the same dimensio...
متن کاملM ar 1 99 4 BANACH SPACES WITH THE 2 - SUMMING PROPERTY
A Banach space X has the 2-summing property if the norm of every linear operator from X to a Hilbert space is equal to the 2-summing norm of the operator. Up to a point, the theory of spaces which have this property is independent of the scalar field: the property is self-dual and any space with the property is a finite dimensional space of maximal distance to the Hilbert space of the same dime...
متن کامل