Src inhibits midline axon crossing independent of Frazzled/Deleted in Colorectal Carcinoma (DCC) receptor tyrosine phosphorylation.

نویسندگان

  • Michael P O'Donnell
  • Greg J Bashaw
چکیده

The phylogenetically conserved Netrin family of chemoattractants signal outgrowth and attractive turning of commissural axons through the Deleted in Colorectal Carcinoma (DCC) family of receptors. Src family kinases are thought to be major signaling effectors of Netrin/DCC. In vertebrates, Src and the closely related Fyn kinases phosphorylate DCC and form a receptor-bound signaling complex leading to activation of downstream effectors. Here we show that, in the Drosophila embryonic CNS, Src kinases are dispensable for midline attraction of commissural axons. Consistent with this observation, tyrosine phosphorylation of the Netrin receptor DCC or its Drosophila ortholog, Frazzled, is not necessary for attraction to Netrin. Moreover, we uncover an unexpected function of Src kinases: inhibition of midline axon crossing through a novel mechanism. We propose that distinct signaling outputs must exist for midline axon crossing independent of Src kinases in commissural neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Signal Transduction Mechanisms In Commissural Axon Guidance: The Role Of Intracellular Tyrosine Kinases In Netrin-Dcc/frazzled Axon Attraction

To develop a functional nervous system, neural circuits are initially established through the stepwise process of neural specification, axon guidance and synaptogenesis. Axon guidance, the process by which neurons extend axons to their final targets, relies on the presence of extracellular cues, and their respective guidance receptors. Intracellular molecules that transduce these signals are cu...

متن کامل

The Intracellular Domain of the Frazzled/DCC Receptor Is a Transcription Factor Required for Commissural Axon Guidance

In commissural neurons of Drosophila, the conserved Frazzled (Fra)/Deleted in Colorectal Cancer (DCC) receptor promotes midline axon crossing by signaling locally in response to Netrin and by inducing transcription of commissureless (comm), an antagonist of Slit-Roundabout midline repulsion, through an unknown mechanism. Here, we show that Fra is cleaved to release its intracellular domain (ICD...

متن کامل

Phosphorylation of DCC by Fyn mediates Netrin-1 signaling in growth cone guidance

Netrin-1 acts as a chemoattractant molecule to guide commissural neurons (CN) toward the floor plate by interacting with the receptor deleted in colorectal cancer (DCC). The molecular mechanisms underlying Netrin-1-DCC signaling are still poorly characterized. Here, we show that DCC is phosphorylated in vivo on tyrosine residues in response to Netrin-1 stimulation of CN and that the Src family ...

متن کامل

Recurrent DCC gene losses during bird evolution

During development, midline crossing by axons brings into play highly conserved families of receptors and ligands. The interaction between the secreted ligand Netrin-1 and its receptor Deleted in Colorectal Carcinoma (DCC) is thought to control midline attraction of crossing axons. Here, we studied the evolution of this ligand/receptor couple in birds taking advantage of a wealth of newly seque...

متن کامل

Tyrosine phosphorylation of netrin receptors in netrin-1 signaling.

Deleted in colorectal cancer (DCC) and neogenin are receptors of netrins, a family of guidance cues that promote axon outgrowth and guide growth cones in developing nervous system. The intracellular mechanisms of netrins, however, remain elusive. In this paper, we show that both DCC and neogenin become tyrosine phosphorylated in cortical neurons in response to netrin-1. Using a site-specific an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 33 1  شماره 

صفحات  -

تاریخ انتشار 2013