Conjectures and Questions Regarding Near Frattini Subgroups of Generalized Free Products of Groups

نویسندگان

  • Mohammad K. Azarian
  • M. K. Azarian
چکیده

Let G = A ∗H B be the generalized free product of the groups A and B with the amalgamated subgroup H. Also, let λ(G), μ(G), ψ(G), K(G,H), and Tor H represent the lower near Frattini subgroup of G, the upper near Frattini subgroup of G, the near Frattini subgroup of G, the core of H in G, and the torsion subgroup of H, respectively. Since 1990 a series of papers have been published by the author dealing with the location of λ(G) and ψ(G). We state the main results from these papers for the cases where ψ(G) = 1, ψ(G) ≤ H, ψ(G) ≤ K(G,H), ψ(G) = Tor H, λ(G) = 1, λ(G) ≤ H, λ(G) ≤ K(G,H), or λ(G) = K(G,H). Also, we state the results obtained by Allenby since 1999 for the cases where μ(G) ≤ H, ψ(G) = K(G,H), or ψ(G) = H. The main goal of this paper is to state four conjectures and to pose sixteen related questions for the reader. Mathematics Subject Classification: Primary 20E06, 20E28; Secondary 22, 55

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Near Frattini Subgroups of Certain Generalized Free Products of Groups

Let G = A ∗H B be the generalized free product of the groups A and B with the amalgamated subgroup H. Also, let λ(G) and ψ(G) represent the lower near Frattini subgroup of G and the near Frattini subgroup of G respectively. We show that G is ψ−free provided: (i) G is any ordinary free product of groups; (ii) G = A ∗H B and there exists an element c in G\H such thatH ∩H = 1; (iii) G = A ∗H B and...

متن کامل

Near Frattini Subgroups of Residually Finite Generalized Free Products of Groups

Let G = A HB be the generalized free product of the groups A and B with the amalgamated subgroup H. Also, let λ(G) and ψ(G) represent the lower near Frattini subgroup and the near Frattini subgroup of G, respectively. If G is finitely generated and residually finite, then we show that ψ(G) ≤ H, provided H satisfies a nontrivial identical relation. Also, we prove that if G is residually finite, ...

متن کامل

Frattini supplements and Frat- series

‎In this study‎, ‎Frattini supplement subgroup and Frattini supplemented group‎ ‎are defined by Frattini subgroup‎. ‎By these definitions‎, ‎it's shown that‎ ‎finite abelian groups are Frattini supplemented and every conjugate of a‎ ‎Frattini supplement of a subgroup is also a Frattini supplement‎. ‎A group action‎ ‎of a group is defined over the set of Frattini supplements of a normal‎ ‎subgro...

متن کامل

Groups in which every subgroup has finite index in its Frattini closure

‎In 1970‎, ‎Menegazzo [Gruppi nei quali ogni sottogruppo e intersezione di sottogruppi massimali‎, ‎ Atti Accad‎. ‎Naz‎. ‎Lincei Rend‎. ‎Cl‎. ‎Sci‎. ‎Fis‎. ‎Mat‎. ‎Natur. 48 (1970)‎, ‎559--562.] gave a complete description of the structure of soluble $IM$-groups‎, ‎i.e.‎, ‎groups in which every subgroup can be obtained as intersection of maximal subgroups‎. ‎A group $G$ is said to have the $FM$...

متن کامل

Abelian groups have/are near Frattini subgroups

The notions of nearly-maximal and near Frattini subgroups considered by J.B. Riles in [20] and the natural related notions are characterized for abelian groups.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010