A Self-Propagating Foaming Process of Porous Al-Ni Intermetallics Assisted by Combustion Reactions

نویسندگان

  • Makoto Kobashi
  • Naoyuki Kanetake
چکیده

The self-propagating foaming process of porous Al-Ni intermetallics was investigated. Aluminum and nickel powders were blended, and titanium and boron carbide powders were added as reactive exothermic agents. The blended powder was extruded to make a rod-shape precursor. Only one end of the rod precursor was heated to ignite the reaction. The reaction propagated spontaneously throughout the precursor. Pore formation took place at the same time as the reaction occurred. Adding the exothermic agent was effective to increase the porosity. Preheating the precursor before the ignition was also very effective to produce porous Al-Ni intermetallics with high porosity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of Fe-Al Intermetallic Foams via Organic Compounds Assisted Sintering

The influence of the addition of organic compounds, such as palmitic acid and cholesteryl myristate, on the porous structure of Fe-Al intermetallics formation has been investigated in detail in this paper. It was found that additives have a significant effect on the final porosity of the obtained sinters. Formed gaseous products from combustion play the role of the foaming agent during Fe-Al in...

متن کامل

NUMERICAL SIMULATION OF COMBUSTION SYNTHESIS OF ALUMINIDE INTERMETALLIC COMPOUNDS

Combustion synthesis is a special thermophysico-chemical process applied for production of intermetallic compounds. In the present work, a reaction–diffusion numerical model was developed to analyze the combustion synthesis of aluminide intermetallics by self-propagating high-temperature synthesis process. In order to verify the reliability of the numerical model, an experimental setup was desi...

متن کامل

The Effect of Gravity on the Combustion Synthesis of Porous Biomaterials

Production of highly porous composite materials by traditional materials processing is limited by difficult processing techniques. This work investigates the use of self propagating high temperature (combustion) synthesis (SHS) to create porous tricalcium phosphate (Ca3(PO4)2), TiB-Ti, and NiTi in low and microgravity. Combustion synthesis provides the ability to use set processing parameters t...

متن کامل

Preparation of aliened porous Ni-GDC nano composite by freeze-casting process

This current study reports preparation of Nickel-Gadolinium doped Ceria (Ni-GDC) composite via controlled unidirectional freeze casting of aqueous-based GDC slurry completed with nickel infiltrated into the porous GDC samples. Gadolinium doped ceria powder prepared by gel-combustion synthesis method. The oxide powder was confirmed to be the fluorite-structured of Ce0.8Gd0.2O1.9 solid solution b...

متن کامل

Synthesis of Al2O3-ZrO2 Nanocomposite by Mechanical Activated Self-propagating High Temperature Synthesis(MASHS) and Ignited via Laser

By consideration of unique properties of composite Al2O3-ZrO2 such as high toughness, high wear resistant and relative low thermal expansion, in this study, nanocomposite of Al2O3-ZrO2 was produced by Mechanical activated Self propagating High-temperature Synthesis (MASHS) using laser beam for ignition. First Al and ZrO2 powders were mixed in the mole ratio of 1:1 and milled for 1, 3 and 6 hour...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2009