An Example of a Differentiability Space Which Is Pi-unrectifiable

نویسنده

  • ANDREA SCHIOPPA
چکیده

We construct a (Lipschitz) differentiability space which has at generic points a disconnected tangent and thus does not contain positive measure subsets isometric to positive measure subsets of spaces admitting a Poincaré inequality. We also prove that l-valued Lipschitz maps are differentiable a.e., but there are also Lipschitz maps taking values in some other Banach spaces having the Radon-Nikodym property which fail to be differentiable on sets of positive measure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tangents and Rectifiability of Ahlfors Regular Lipschitz Differentiability Spaces

We study Lipschitz differentiability spaces, a class of metric measure spaces introduced by Cheeger in [8]. We show that if an Ahlfors regular Lipschitz differentiability space has charts of maximal dimension, then, at almost every point, all its tangents are uniformly rectifiable. In particular, at almost every point, such a space admits a tangent that is isometric to a finite-dimensional Bana...

متن کامل

A geometrical approach to monotone functions in R n

This paper is concerned with the fine properties of monotone functions on R. We study the continuity and differentiability properties of these functions, the approximability properties, the structure of the distributional derivatives and of the weak Jacobians. Moreover, we exhibit an example of a monotone function u which is the gradient of a C convex function and whose weak Jacobian Ju is supp...

متن کامل

The existence result of a fuzzy implicit integro-differential equation in semilinear Banach space

In this paper‎, ‎the existence and uniqueness of the ‎solution of a nonlinear fully fuzzy implicit integro-differential equation‎ ‎arising in the field of fluid mechanics is investigated. ‎First,‎ an equivalency lemma ‎is ‎presented ‎by‎ which the problem understudy ‎is ‎converted‎ to ‎the‎ two different forms of integral equation depending on the kind of differentiability of the solution. Then...

متن کامل

Generalized H-differentiability for solving second order linear fuzzy differential ‎equations

In this paper, a new approach for solving the second order fuzzy differential equations (FDE) with fuzzy initial value, under strongly generalized H-differentiability is presented. Solving first order fuzzy differential equations by extending 1-cut solution of the original problem and solving fuzzy integro-differential equations has been investigated by some authors (see for example cite{darabi...

متن کامل

Application of iterative method for solving fuzzy Bernoulli equation under generalized H-differentiability

In this paper, the Picard method is proposed to solve the Bernoulli equation with fuzzy initial condition under generalized H-differentiability. The existence and uniqueness of the solution and convergence of the proposed method are proved in details. Finally an example shows the accuracy of this method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016