Microwave Imaging Sensor Using Compact Metamaterial UWB Antenna with a High Correlation Factor
نویسندگان
چکیده
The design of a compact metamaterial ultra-wideband (UWB) antenna with a goal towards application in microwave imaging systems for detecting unwanted cells in human tissue, such as in cases of breast cancer, heart failure and brain stroke detection is proposed. This proposed UWB antenna is made of four metamaterial unit cells, where each cell is an integration of a modified split ring resonator (SRR), capacitive loaded strip (CLS) and wire, to attain a design layout that simultaneously exhibits both a negative magnetic permeability and a negative electrical permittivity. This design results in an astonishing negative refractive index that enables amplification of the radiated power of this reported antenna, and therefore, high antenna performance. A low-cost FR4 substrate material is used to design and print this reported antenna, and has the following characteristics: thickness of 1.6 mm, relative permeability of one, relative permittivity of 4.60 and loss tangent of 0.02. The overall antenna size is 19.36 mm × 27.72 mm × 1.6 mm where the electrical dimension is 0.20 λ × 0.28 λ × 0.016 λ at the 3.05 GHz lower frequency band. Voltage Standing Wave Ratio (VSWR) measurements have illustrated that this antenna exhibits an impedance bandwidth from 3.05 GHz to more than 15 GHz for VSWR < 2 with an average gain of 4.38 dBi throughout the operating frequency band. The simulations (both HFSS and computer simulation technology (CST)) and the measurements are in high agreement. A high correlation factor and the capability of detecting tumour simulants confirm that this reported UWB antenna can be used as an imaging sensor.
منابع مشابه
A Negative Index Metamaterial-Inspired UWB Antenna with an Integration of Complementary SRR and CLS Unit Cells for Microwave Imaging Sensor Applications
This paper presents a negative index metamaterial incorporated UWB antenna with an integration of complementary SRR (split-ring resonator) and CLS (capacitive loaded strip) unit cells for microwave imaging sensor applications. This metamaterial UWB antenna sensor consists of four unit cells along one axis, where each unit cell incorporates a complementary SRR and CLS pair. This integration enab...
متن کاملMulti Attribute Analysis of a Novel Compact UWB Antenna with Via-fed Elements for Dual Band Notch Function (RESEARCH NOTE)
A compact microstrip-fed antenna with dual notched bands is proposed. First, a simple basic configuration is presented for Ultra Wide Band (UWB) applications and then the dual band notched structure is extended from the UWB one. The basic structure of the UWB antenna consists of a simple square radiating patch and a ground plane with a wide square slot on back of the substrate. A semi-circle sh...
متن کاملUWB Planar Conical Horn-Shaped Self-Complementary Bow-Tie Antenna
An ultra-wideband (UWB) self-complementary planar bow-tie antenna (SCPBTA) is proposed. The antenna consists of a printed conical horn-shaped (CHS) radiator and a counterpart CHS slot etched on a rectangular ground plane. The printed CHS radiator is connected directly to the 50Ω microstrip line by bending the end portion of the feed line. As a result, the antenna has a simple structure which do...
متن کاملA Miniaturized CPW-Fed Tapered Slot Antenna in Lossy Environment for UWB Application in Breast Cancer Detection
In this paper, a miniaturized coplanar waveguide fed (CPW-fed) tapered slot antenna (TSA) is introduced for breast cancer detection. Here, a modified CPW to slot-line transition structure with an air-bridge is employed to broaden the transition bandwidth and increase the radiation efficiency. Through these applied modifications, negative features of the original TSA (limitation of transition) a...
متن کاملDesign of the Compact Ultra-Wideband (UWB) Antenna Bandwidth Optimization Using Particle Swarm Optimization Algorithm
In this paper a particle swarm optimization (PSO) algorithm is presented to design a compact stepped triangle shape antenna in order to obtain the proper UWB bandwidth as defined by FCC. By changing the various cavity dimensions of the antenna, data to develop PSO program in MATLAB is achieved. The results obtained from the PSO algorithm are applied to the antenna design to fine-tune the bandwi...
متن کامل