Multi-processor Computer System Having Low Power Consumption

نویسندگان

  • C. Michael Olsen
  • L. Alex Morrow
چکیده

We propose to improve battery life in pervasive devices by using multiple processors that trade off computing capacity for improved energy-per-cycle (EPC) efficiency. A separate scheduler circuit intercepts interrupts and schedules execution to minimize overall energy consumption. To facilitate this operation, software tasks are compiled and profiled for execution on multiple processors so that task requirements to computing capacities may be evaluated realistically to satisfy system requirements and task response time. We propose a simple model for estimating the EPC for each processor. To optimize energy consumption, processors are designed to satisfy a particular usage model. Thus, the particular task suite that is anticipated to run on the device, in conjunction with user expectations to software reaction times, governs the design point of each processor. We show that the battery life of a wearable device may be extended by a factor 3-18 depending on users activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultra-Low-Energy DSP Processor Design for Many-Core Parallel Applications

Background and Objectives: Digital signal processors are widely used in energy constrained applications in which battery lifetime is a critical concern. Accordingly, designing ultra-low-energy processors is a major concern. In this work and in the first step, we propose a sub-threshold DSP processor. Methods: As our baseline architecture, we use a modified version of an existing ultra-low-power...

متن کامل

Low-Area/Low-Power CMOS Op-Amps Design Based on Total Optimality Index Using Reinforcement Learning Approach

This paper presents the application of reinforcement learning in automatic analog IC design. In this work, the Multi-Objective approach by Learning Automata is evaluated for accommodating required functionalities and performance specifications considering optimal minimizing of MOSFETs area and power consumption for two famous CMOS op-amps. The results show the ability of the proposed method to ...

متن کامل

Evaluation of Power Consumption at Execution of Multiple Automatically Parallelized and Power Controlled Media Applications on the RP2 Low-Power Multicore

This paper evaluates an automatic power reduction scheme of OSCAR automatic parallelizing compiler having power reduction control capability when multiple media applications parallelized by the OSCAR compiler are executed simultaneously on RP2, a 8-core multicore processor developed by Renesas Electronics, Hitachi, and Waseda University. OSCAR compiler enables the hierarchical multigrain parall...

متن کامل

Multi-Grain Power Control Scheme in Ultra-Low-Power Data-Driven Chip multiprocessor: ULP-DDCMP

The authors are developing multi-grain power control scheme in ultra-low power data-driven chip multiprocessor (ULP-DDCMP) being suitable for a networking process in low power and a high performance. ULP-DDCMP consists of four ultra-low power CUEs (ULPCUE) and a token router distributing received packets to ULP-CUE by a round robin manner. ULP-CUE consists of an elastic self-timed pipeline (STP...

متن کامل

Cache-Aware Utilization Control for Energy-Efficient Multi-Core Real-Time Systems

Multi-core processors are anticipated to become a major development platform for real-time systems. However, existing power management algorithms are not designed to sufficiently utilize the features available in many multi-core processors, such as shared L2 caches and per-core DVFS, to effectively minimize processor energy consumption while providing real-time guarantees. In this paper, we pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002