Attenuation of mouse somatic and emotional inflammatory pain by hydralazine through scavenging acrolein and inhibiting neuronal activation.
نویسندگان
چکیده
BACKGROUND Acrolein signaling is important during spinal cord injury; whether it is involved in somatic and emotional pain is not clear. Hydralazine is a potent antihypertensive drug and can scavenge acrolein efficiently. OBJECTIVE We hypothesized that hydralazine decreases spinal level acrolein and renders analgesic effects with some side effects, which was tested in the current study. STUDY DESIGN Subcutaneous injection of formalin was used to induce somatic and emotional pain responses. The spinal neuronal activation (FOS expression) and acrolein expression were evaluated at 2 hours after subcutaneous formalin injection. The possible side effects of hydralazine on the murine central nervous system or cardiovascular system were evaluated at one hour after hydralazine injection with open field, elevated plus maze and rotarod tests, or telemetrical measurement of mean artery blood pressure and heart rate. RESULTS The subcutanous injection of formalin into the left hind paw induced significant somatic and emotional pain responses, evaluated by the biphasic spontaneous flinch/licking of the injected hind paw and interphase ultrasonic vocalizations during the one hour window after formalin injection. The spinal acrolein level was significantly increased and neurons were activated at 2 hours after formalin injection. Intraperitoneal injection of hydralazine (at 0.1, 1 or 10 mg/kg of body weight) at one hour before formalin challenging dose-dependently attenuated the formalin induced pain responses with an analgesic 50% effect dose ranging from 0.2 to 1 mg/kg of body weight. Furthermore, the neuronal activation and elevated acrolein expression were dose-dependently inhibited by hydralazine pretreatment. The side effects of intraperitoneal hydralazine on locomotion, anxiety, and motor coordination at one hour after hydralazine administration had negative results. The main side effects of hydralazine were an insignificant decrease of blood pressure and a significant increase of heart rates at high dose (10 mg/kg of body weight). LIMITATIONS This study is limited because the analgesic effect of hydralazine was tested on only one type of acute inflammatory pain model; however, its effect on chronic inflammatory or neuropathic pain needs to be further investigated. CONCLUSIONS Based on the above findings, hydralazine may find its new application of analgesia within a safe dose window (around one mg/kg of body weight) without causing severe side effects.
منابع مشابه
Acrolein involvement in sensory and behavioral hypersensitivity following spinal cord injury in the rat.
Growing evidence suggests that oxidative stress, as associated with spinal cord injury (SCI), may play a critical role in both neuroinflammation and neuropathic pain conditions. The production of the endogenous aldehyde acrolein, following lipid peroxidation during the inflammatory response, may contribute to peripheral sensitization and hyperreflexia following SCI via the TRPA1-dependent mecha...
متن کاملHydralazine inhibits rapid acrolein-induced protein oligomerization: role of aldehyde scavenging and adduct trapping in cross-link blocking and cytoprotection.
Hydralazine strongly suppresses the toxicity of acrolein, a reactive aldehyde that contributes to numerous health disorders. At least two mechanisms may underlie the cytoprotection, both of which involve the nucleophilic hydrazine possessed by hydralazine. Under the simplest scenario, hydralazine directly scavenges free acrolein, decreasing intracellular acrolein availability and thereby suppre...
متن کاملElectroacupuncture reduces chronic fibromyalgia pain through attenuation of transient receptor potential vanilloid 1 signaling pathway in mouse brains
Objective(s): Fibromyalgia pain is a mysterious clinical pain syndrome, characterized by inflammation in the brain, whose molecular mechanisms are still unknown. Females are more commonly affected by fibromyalgia, exhibiting symptoms such as widespread mechanical pain, immune dysfunction, sleep disturbances, and poor quality of life. Electroacupuncture (EA) has been us...
متن کاملHydralazine inhibits compression and acrolein-mediated injuries in ex vivo spinal cord.
We have previously shown that acrolein, a lipid peroxidation byproduct, is significantly increased following spinal cord injury in vivo, and that exposure to neuronal cells results in oxidative stress, mitochondrial dysfunction, increased membrane permeability, impaired axonal conductivity, and eventually cell death. Acrolein thus may be a key player in the pathogenesis of spinal cord injury, w...
متن کاملChitosan nanoparticle-based neuronal membrane sealing and neuroprotection following acrolein-induced cell injury
BACKGROUND The highly reactive aldehyde acrolein is a very potent endogenous toxin with a long half-life. Acrolein is produced within cells after insult, and is a central player in slow and progressive "secondary injury" cascades. Indeed, acrolein-biomolecule complexes formed by cross-linking with proteins and DNA are associated with a number of pathologies, especially central nervous system (C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pain physician
دوره 15 4 شماره
صفحات -
تاریخ انتشار 2012