Cerium oxide nanoparticles attenuate acute kidney injury induced by intra-abdominal infection in Sprague–Dawley rats
نویسندگان
چکیده
BACKGROUND Intra-abdominal infection or peritonitis is a cause for great concern due to high mortality rates. The prognosis of severe intra-abdominal infection is significantly diminished in the presence of acute kidney injury (AKI) which is often characterized by renal tubular cell death that can lead to renal failure. The purpose of the current study is to examine the therapeutic efficacy of cerium oxide (CeO2) nanoparticles for the treatment of peritonitis-induced AKI by polymicrobial insult. RESULTS A one-time administration of CeO2 nanoparticles (0.5 mg/kg) in the absence of antibiotics or other supportive care, attenuated peritonitis-induced tubular dilatation and the loss of brush border in male Sprague-Dawley rats. These improvements in renal structure were accompanied by decreases in serum cystatin-C levels, reduced renal oxidative stress, diminished Stat-3 phosphorylation and an attenuation of caspase-3 cleavage suggesting that the nanoparticle treatment improved renal glomerular filtration rate, diminished renal inflammation and reduced renal apoptosis. Consistent with these data, further analysis demonstrated that the CeO2 nanoparticle treatment diminished peritonitis-induced increases in serum kidney injury molecule-1 (KIM-1), osteopontin, β-2 microglobulin and vascular endothelial growth factor-A (VEGF-A) levels. In addition, the nanoparticle attenuated peritonitis-induced hyperglycemia along with increases in blood urea nitrogen (BUN), serum potassium and sodium. CONCLUSION CeO2 nanoparticles scavenge reactive oxygen species and attenuate polymicrobial insult induced increase in inflammatory mediators and subsequent AKI. Taken together, the data indicate that CeO2 nanoparticles may be useful as an alternative therapeutic agent or in conjunction with standard medical care for the treatment of peritonitis induced acute kidney injury.
منابع مشابه
Cerium Oxide Nanoparticles Attenuate Polymicrobial Sepsis Induced Splenic Damage in male Sprague Dawley Rats
متن کامل
Intratracheal instillation of cerium oxide nanoparticles induces hepatic toxicity in male Sprague-Dawley rats
BACKGROUND Cerium oxide (CeO(2)) nanoparticles have been posited to have both beneficial and toxic effects on biological systems. Herein, we examine if a single intratracheal instillation of CeO(2) nanoparticles is associated with systemic toxicity in male Sprague-Dawley rats. METHODS AND RESULTS Compared with control animals, CeO(2) nanoparticle exposure was associated with increased liver c...
متن کاملProphylactic Treatment with Cerium Oxide Nanoparticles Attenuate Hepatic Ischemia Reperfusion Injury in Sprague Dawley Rats.
BACKGROUND Hepatic ischemia reperfusion is one the main causes for graft failure following transplantation. Although, the molecular events that lead to hepatic failure following ischemia reperfusion (IR) are diverse and complex, previous studies have shown that excessive formation of reactive oxygen species (ROS) are responsible for hepatic IR injury. Cerium oxide (CeO2) nanoparticles have been...
متن کاملOzone therapy could attenuate tubulointerstitial injury in adenine-induced CKD rats by mediating Nrf2 and NF-κB
Objective(s): This study aims to determine the effects of ozone therapy on restoring impaired Nrf2 activation to ameliorate chronic tubulointerstitial injury in rats with adenine-induced CKD. Materials and Methods: Sprague–Dawley rats were fed with 0.75% adenine-containing diet to induce CKD and chronic tubulointerstitial injury. Ozone therapy was administered by rectal insufflation. After 4 we...
متن کاملCerium Oxide Nanoparticles Reduce Microglial Activation and Neurodegenerative Events in Light Damaged Retina
The first target of any therapy for retinal neurodegeneration is to slow down the progression of the disease and to maintain visual function. Cerium oxide or ceria nanoparticles reduce oxidative stress, which is known to play a pivotal role in neurodegeneration. Our aim was to investigate whether cerium oxide nanoparticles were able to mitigate neurodegeneration including microglial activation ...
متن کامل