L Bounds for Spectral Clusters

نویسنده

  • HART F. SMITH
چکیده

In these notes, we review recent results concerning the Lp norm bounds for spectral clusters on compact manifolds. The type of estimates we consider were first established by Sogge [15] in the case of smooth metrics. Recent results of ours in [10] establish the same estimates under the assumption that the metric is C1,1. It is known by examples of Smith-Sogge [12] that such estimates fail for C1,α metrics if α < 1, and we discuss methods for obtaining slightly weaker results in this setting also.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Bounds on the PI Spectral Radius

In this paper some upper and lower bounds for the greatest eigenvalues of the PI and vertex PI matrices of a graph G are obtained. Those graphs for which these bounds are best possible are characterized.

متن کامل

Sharp L Bounds on Spectral Clusters for Holder Metrics

We establish Lq bounds on eigenfunctions, and more generally on spectrally localized functions (spectral clusters), associated to a self-adjoint elliptic operator on a compact manifold, under the assumption that the coefficients of the operator are of regularity Cs, where 0 ≤ s ≤ 1. We also produce examples which show that these bounds are best possible for the case q =∞, and for 2 ≤ q ≤ qn.

متن کامل

Error bounds in approximating n-time differentiable functions of self-adjoint operators in Hilbert spaces via a Taylor's type expansion

On utilizing the spectral representation of selfadjoint operators in Hilbert spaces, some error bounds in approximating $n$-time differentiable functions of selfadjoint operators in Hilbert Spaces via a Taylor's type expansion are given.

متن کامل

Sharp Bounds on Spectral Clusters for Lipschitz Metrics

We establish Lp bounds on L2 normalized spectral clusters for selfadjoint elliptic Dirichlet forms with Lipschitz coefficients. In two dimensions we obtain best possible bounds for all 2 ≤ p ≤ ∞, up to logarithmic losses for 6 < p ≤ 8. In higher dimensions we obtain best possible bounds for a limited range of p.

متن کامل

Subcritical L Bounds on Spectral Clusters for Lipschitz Metrics

We establish asymptotic bounds on the Lp norms of spectrally localized functions in the case of two-dimensional Dirichlet forms with coefficients of Lipschitz regularity. These bounds are new for the range 6 < p < ∞. A key step in the proof is bounding the rate at which energy spreads for solutions to hyperbolic equations with Lipschitz coefficients.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006