Matrix Size Dense Matrix Fill Ns-form Matrix Fill

ثبت نشده
چکیده

Figure 13: The total matrix ll time for each of the three methods: LU Decomposition , Conjugate Residual iteration, and the ns-form algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی مقایسه‌ای اثرEnamel Matrix Protein به تنهایی و همراه با پیوند استخوانی اتوژن در درمان ضایعات پریودنتال انسانی داخل استخوانی دو دیواره

Statement of Problem: Regenerative periodontal procedures are one mode of therapy that attempts to restore the lost supporting structures of the dentition around a previously diseased root surface.Purpose: The purpose of this study was comparison between Enamel matrix proteins (EMP) used alone or in combination with autogenous bone graft (ABG) in the treatment of human intrabony periodontal def...

متن کامل

The inverse fast multipole method: using a fast approximate direct solver as a preconditioner for dense linear systems

Although some preconditioners are available for solving dense linear systems, there are still many matrices for which preconditioners are lacking, in particular in cases where the size of the matrix N becomes very large. Examples of preconditioners include ILU preconditioners that sparsify the matrix based on some threshold, algebraic multigrid, and specialized preconditioners, e.g., Calderón a...

متن کامل

Assessing an approximation algorithm for the minimum fill-in problem in practice

During a Cholesky factorization, a zero matrix element may become nonzero, a phenomenon called fill-in. This can increase the storage requirement and computing time by orders of magnitude. It is well-known that a permutation of the coefficient matrix influences the size of the fill-in. So, one is interested in the minimum fill-in problem, finding a permutation that leads to the least possible f...

متن کامل

Prior reduced fill-in in solving equations in interior point algorithms

The efficiency of interior-point algorithms for linear programming is related to the effort required to factorize the matrix used to solve for the search direction at each iteration. When the linear program is in symmetric form (i.e., the constraints are Ax < b, x > 0 ), then there are two mathematically equivalent forms of the search direction, involving different matrices. One form necessitat...

متن کامل

Minimum Degree Reordering Algorithms: A Tutorial

The problem of matrix inversion is central to many applications of Numerical Linear Algebra. When the matrix to invert is dense, little can be done to avoid the costly O(n) process of Gaussian Elimination. When the matrix is symmetric, one can use the Cholesky Factorization to reduce the work of inversion (still O(n), but with a smaller coefficient). When the matrix is both sparse and symmetric...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994