A Lower Bound for the Canonical Height on Elliptic Curves over Abelian Extensions

نویسنده

  • JOSEPH H. SILVERMAN
چکیده

Let E/K be an elliptic curve defined over a number field, let ĥ be the canonical height on E, and let K/K be the maximal abelian extension of K. Extending work of Baker [4], we prove that there is a constant C(E/K) > 0 so that every nontorsion point P ∈ E(K) satisfies ĥ(P ) > C(E/K).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lower Bounds for the Canonical Height on Elliptic Curves over Abelian Extensions

Let K be a number field and let E/K be an elliptic curve. If E has complex multiplication, we show that there is a positive lower bound for the canonical height of non-torsion points on E defined over the maximal abelian extension K of K. This is analogous to results of Amoroso-Dvornicich and Amoroso-Zannier for the multiplicative group. We also show that if E has non-integral j-invariant (so t...

متن کامل

Computing a lower bound for the canonical height on elliptic curves over number fields

Computing a lower bound for the canonical height is a crucial step in determining a Mordell–Weil basis for elliptic curves. This paper presents an algorithm for computing such a lower bound for elliptic curves over number fields without searching for points. The algorithm is illustrated by some examples.

متن کامل

Computing a Lower Bound for the Canonical Height on Elliptic Curves over Totally Real Number Fields

Computing a lower bound for the canonical height is a crucial step in determining a Mordell–Weil basis of an elliptic curve. This paper presents a new algorithm for computing such lower bound, which can be applied to any elliptic curves over totally real number fields. The algorithm is illustrated via some examples.

متن کامل

Complete characterization of the Mordell-Weil group of some families of elliptic curves

 The Mordell-Weil theorem states that the group of rational points‎ ‎on an elliptic curve over the rational numbers is a finitely‎ ‎generated abelian group‎. ‎In our previous paper, H‎. ‎Daghigh‎, ‎and S‎. ‎Didari‎, On the elliptic curves of the form $ y^2=x^3-3px$‎, ‎‎Bull‎. ‎Iranian Math‎. ‎Soc‎.‎‎ 40 (2014)‎, no‎. ‎5‎, ‎1119--1133‎.‎, ‎using Selmer groups‎, ‎we have shown that for a prime $p...

متن کامل

A Lower Bound for the Canonical Height on Abelian Varieties over Abelian Extensions

Let A be an abelian variety defined over a number field K and let ĥ be the canonical height function on A(K̄) attached to a symmetric ample line bundle L. We prove that there exists a constant C = C(A, K,L) > 0 such that ĥ(P ) ≥ C for all nontorsion points P ∈ A(K), where K is the maximal abelian extension of K. Introduction The purpose of this paper is to provide a proof of the following result...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008