The microRNA pathway and fragile X mental retardation protein.
نویسندگان
چکیده
Fragile X syndrome, one of the most common forms of inherited mental retardation, is caused by the functional loss of fragile X mental retardation protein (FMRP). MicroRNAs (miRNAs), a newly discovered class of small noncoding RNAs, have been implicated in multiple biological processes through posttranscriptional gene regulation. Recent evidence supports this view in terms of the biochemical and genetic interaction found between FMRP and the miRNA pathway, providing deeper insight into the molecular pathogenesis of mental retardation. This review briefly summarizes the progress towards an understanding of the role miRNAs play in neurological disorders, with a focus on the mechanism of interaction between FMRP and the miRNA pathway in the context of fragile X syndrome. In addition, we go on to discuss how the miRNA pathway may be involved in mental retardation.
منابع مشابه
Role of microRNA pathway in mental retardation.
Deficits in cognitive functions lead to mental retardation (MR). Understanding the genetic basis of inherited MR has provided insights into the pathogenesis of MR. Fragile X syndrome is one of the most common forms of inherited MR, caused by the loss of functional Fragile X Mental Retardation Protein (FMRP). MicroRNAs (miRNAs) are endogenous, single-stranded RNAs between 18 and 25 nucleotides i...
متن کاملThe Bantam microRNA Is Associated with Drosophila Fragile X Mental Retardation Protein and Regulates the Fate of Germline Stem Cells
Fragile X syndrome, a common form of inherited mental retardation, is caused by the loss of fragile X mental retardation protein (FMRP). We have previously demonstrated that dFmr1, the Drosophila ortholog of the fragile X mental retardation 1 gene, plays a role in the proper maintenance of germline stem cells in Drosophila ovary; however, the molecular mechanism behind this remains elusive. In ...
متن کاملTranscription, translation and fragile X syndrome.
The fragile X mental retardation protein (FMRP) plays a role in the control of local protein synthesis in the dendrites. Loss of its production in fragile X syndrome is associated with transcriptional dysregulation of the gene. Recent work demonstrates that Sp1 and NRF1 transcriptionally control this gene. Other studies reveal how the microRNA pathway and signaling are related to FMRP function ...
متن کاملگزارش یک مورد سندرم ایکس شکننده همراه با ناهنجاری انگشتان
Fragile X Syndrome, the most common cause of inherited mental retardation, results from mutation in fragile X mental retardation gene (FMR1) on long arm of X chromosome, Xq27.3. Clinical features include moderate to severe mental retardation without neurologic deficit, long face, large ears, prominent jaw, macro-orchidism, attention deficit, behavior di...
متن کاملMeCP2-dependent repression of an imprinted miR-184 released by depolarization.
Both fragile X syndrome and Rett syndrome are commonly associated with autism spectrum disorders and involve defects in synaptic plasticity. MicroRNA is implicated in synaptic plasticity because fragile X mental retardation protein was recently linked to the microRNA pathway. DNA methylation is also involved in synaptic plasticity since methyl CpG-binding protein 2 (MeCP2) is mutated in patient...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochimica et biophysica acta
دوره 1779 11 شماره
صفحات -
تاریخ انتشار 2008