Numerical Study on the Design of Microchannel Evaporators for Ejector Refrigeration Cycles
نویسندگان
چکیده
Two-phase ejectors are devices capable of improving the performance of refrigeration and air conditioning cycles by means of expansion work recovery. Ejector studies often focus on the design and performance of the two-phase ejector and the effect it can have on the performance of the ejector cycle. However, the ejector is not the only component of the system that can have a significant influence on the performance of the ejector cycle. Recent experimental work has shown that the effect of evaporator design on ejector cycle performance can be quite significant, though there is very little research available on the relation between evaporator design and ejector cycle performance. In this paper, a numerical model of a microchannel air-to-refrigerant evaporator, capable of accounting for heat transfer and pressure drop effects, is developed and used to investigate the effect that different evaporator dimensions have on the performance of ejector cycles. The model has been previously validated with experimental data in previous studies. There are two ejector cycles of interest: The standard ejector cycle, in which the ejector is used to directly lift the compressor suction pressure, and the ejector recirculation cycle, in which the ejector recirculates excess liquid through the evaporator but does not directly lift compressor suction pressure. The effects of microchannel port hydraulic diameter, number of evaporator passes, refrigerant outlet state, and air-side resistance are investigated. The analysis is performed with refrigerants R410A and CO2 (R744) in order to demonstrate how proper evaporator and ejector cycle design is different for different refrigerants.
منابع مشابه
Performance Investigation of Two Two-Stage Trans-Critical Carbon Dioxide Refrigeration Cycles Ejector and Internal Heat Exchanger
In the present work, the performances of improved two-stage multi inter-cooler trans- critical carbon dioxide (CO2) refrigeration cycles with ejector and internal heat exchanger have been examined. In the new improved cycles, an internal heat exchanger is append to the cycles. Also, second inter-cooler in improved cycles, cooled with the refrigeration of the cycle, so that in first c...
متن کاملExperimental Study on the Performance of Dual-Evaporator Refrigeration System with an Ejector
Experimental investigation on the performance of dual-evaporator refrigeration system with an ejector has been carried out In this study, HFC-134a is chosen as a working fluid. Test setup is composed of compressor, condenser, expansion valves, two evaporators, and ejector which is installed between two evaporators. The condenser and two evaporators are made as concentric counter-flow type heat ...
متن کاملExperimental and Analytical Investigation of Automotive Ejector Air-Conditioning Cycles Using Low-Pressure Refrigerants
In recent years, ejectors have received much attention because of their ability to reduce throttling losses and increase the efficiency of stationary and mobile air-conditioning systems. While much of the initial research was carried out with high pressure fluids, such as carbon dioxide, it was soon discovered that ejectors can also offer significant advantages in systems that utilize low press...
متن کاملThe energy and exergy analysis of a novel cogeneration organic Rankine power and two-stage compression refrigeration cycle
The energy crisis in recent years has led to the use of thermodynamic cycles that work based on renewable energies. Low-temperature cycles—such as organic cycles—are suitable strategies for the application of renewable energies. The present study proposes a novel cycle through the integration of a two-stage compression refrigeration cycle with a combined Rankine power and ejector refrigerat...
متن کاملEquivalent Temperature-Enthalpy Diagram for the Study of Ejector Refrigeration Systems
The Carnot factor versus enthalpy variation (heat) diagram has been used extensively for the second law analysis of heat transfer processes. With enthalpy variation (heat) as the abscissa and the Carnot factor as the ordinate the area between the curves representing the heat exchanging media on this diagram illustrates the exergy losses due to the transfer. It is also possible to draw the paths...
متن کامل