DSCR1 interacts with FMRP and is required for spine morphogenesis and local protein synthesis.

نویسندگان

  • Wei Wang
  • John Z Zhu
  • Karen T Chang
  • Kyung-Tai Min
چکیده

Most common genetic factors known to cause intellectual disability are Down syndrome and Fragile X syndrome. However, the underlying cellular and molecular mechanisms of intellectual disability remain unclear. Recently, dendritic spine dysmorphogenesis and impaired local protein synthesis are posited to contribute to the cellular mechanisms of intellectual disability. Here, we show that Down syndrome critical region1 (DSCR1) interacts with Fragile X mental retardation protein (FMRP) and regulates both dendritic spine morphogenesis and local protein synthesis. Interestingly, decreasing the level of FMRP restores the DSCR1-induced changes in dendritic spine morphology. Our results imply that DSCR1 is a novel regulator of FMRP and that Fragile X syndrome and Down syndrome may share disturbances in common pathways that regulate dendritic spine morphology and local protein synthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Down syndrome DSCR1 causes spine pathology via the Fragile X-related protein FMRP.

A new study by Wang et al (2012) published in The EMBO Journal reports that the Down Syndrome Critical Region 1 (DSCR1) protein interacts with the Fragile X-related protein (FMRP) to regulate spine morphology and local protein synthesis. These findings highlight a convergence of Down syndrome (DS) and Fragile X pathogenic pathways, and provide insights on potential therapeutic approaches. DS is...

متن کامل

A direct role for FMRP in activity-dependent dendritic mRNA transport links filopodial-spine morphogenesis to fragile X syndrome.

The function of local protein synthesis in synaptic plasticity and its dysregulation in fragile X syndrome (FXS) is well studied, however the contribution of regulated mRNA transport to this function remains unclear. We report a function for the fragile X mental retardation protein (FMRP) in the rapid, activity-regulated transport of mRNAs important for synaptogenesis and plasticity. mRNAs were...

متن کامل

DSCR1 is required for both axonal growth cone extension and steering

Local information processing in the growth cone is essential for correct wiring of the nervous system. As an axon navigates through the developing nervous system, the growth cone responds to extrinsic guidance cues by coordinating axon outgrowth with growth cone steering. It has become increasingly clear that axon extension requires proper actin polymerization dynamics, whereas growth cone stee...

متن کامل

Signals, Synapses, and Synthesis: How New Proteins Control Plasticity

Localization of mRNAs to dendrites and local protein synthesis afford spatial and temporal regulation of gene expression and endow synapses with the capacity to autonomously alter their structure and function. Emerging evidence indicates that RNA binding proteins, ribosomes, translation factors and mRNAs encoding proteins critical to synaptic structure and function localize to neuronal processe...

متن کامل

FMRP DEPENDENT SYNAPTIC DELIVERY OF MESSENGER RNA BY DER-I KAO DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Cell and Developmental Biology

Fragile X syndrome is caused by the absence of functional fragile X mental retardation protein (FMRP), an RNA binding protein. The molecular mechanism of aberrant protein synthesis in fmr1 KO mice is closely associated with the role of FMRP in mRNA transport, delivery, and local protein synthesis. We show that GFP labeled Fmr1 and CaMKII mRNAs undergo decelerated motion at 0-40 minutes after g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 31 18  شماره 

صفحات  -

تاریخ انتشار 2012