Conserved expression profiles of circadian clock-related genes in two Lemna species showing long-day and short-day photoperiodic flowering responses.
نویسندگان
چکیده
The Lemna genus is a group of monocotyledonous plants with tiny, floating bodies. Lemna gibba G3 and L. paucicostata 6746 were once intensively analyzed for physiological timing systems of photoperiodic flowering and circadian rhythms since they showed obligatory and sensitive photoperiodic responses of a long-day and a short-day plant, respectively. We attempted to approach the divergence of biological timing systems at the molecular level using these plants. We first employed molecular techniques to study their circadian clock systems. We developed a convenient bioluminescent reporter system to monitor the circadian rhythms of Lemna plants. As in Arabidopsis, the Arabidopsis CCA1 promoter produced circadian expression in Lemna plants, though the phases and the sustainability of bioluminescence rhythms were somewhat diverged between them. Lemna homologs of the Arabidopsis clock-related genes LHY/CCA1, GI, ELF3 and PRRs were then isolated as candidates for clock-related genes in these plants. These genes showed rhythmic expression profiles that were basically similar to those of Arabidopsis under light-dark conditions. Results from co-transfection assays using the bioluminescence reporter and overexpression effectors suggested that the LHY and GI homologs of Lemna can function in the circadian clock system like the counterparts of Arabidopsis. All these results suggested that the frame of the circadian clock appeared to be conserved not only between the two Lemna plants but also between monocotyledons and dicotyledons. However, divergence of gene numbers and expression profiles for LHY/CCA1 homologs were found between Lemna, rice and Arabidopsis, suggesting that some modification of clock-related components occurred through their evolution.
منابع مشابه
Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1.
Two evolutionarily distant plant species, rice (Oryza sativa L.), a short-day (SD) plant, and Arabidopsis thaliana, a long-day plant, share a conserved genetic network controlling photoperiodic flowering. The orthologous floral regulators-rice Heading date 1 (Hd1) and Arabidopsis CONSTANS (CO)-integrate circadian clock and external light signals into mRNA expression of the FLOWERING LOCUS T (FT...
متن کاملThe circadian clock regulates the photoperiodic response of hypocotyl elongation through a coincidence mechanism in Arabidopsis thaliana.
The plant circadian clock generates rhythms with a period close to 24 h, and it controls a wide range of physiological and developmental oscillations in habitats under natural light/dark cycles. Among clock-controlled developmental events, the best characterized is the photoperiodic control of flowering time in Arabidopsis thaliana. Recently, it was also reported that the clock regulates a dail...
متن کاملCircadian Clock and Photoperiodic Response in Arabidopsis: From Seasonal Flowering to Redox Homeostasis
Many of the developmental responses and behaviors in plants that occur throughout the year are controlled by photoperiod; among these, seasonal flowering is the most characterized. Molecular genetic and biochemical analyses have revealed the mechanisms by which plants sense changes in day length to regulate seasonal flowering. In Arabidopsis thaliana, induction of the expression of a florigen, ...
متن کاملA circadian rhythm set by dusk determines the expression of FT homologs and the short-day photoperiodic flowering response in Pharbitis.
Seasonal control of flowering through responsiveness to daylength shows extreme variation. Different species flower in response to long days or short days (SDs), and this difference evolved several times. The molecular mechanisms conferring these responses have been compared in detail only in Arabidopsis thaliana and rice (Oryza sativa) and suggest that a conserved pathway confers daylength res...
متن کاملCircadian clock proteins LHY and CCA1 regulate SVP protein accumulation to control flowering in Arabidopsis.
The floral regulators GIGANTEA (GI), CONSTANS (CO), and FLOWERING LOCUS T (FT) play key roles in the photoperiodic flowering responses of the long-day plant Arabidopsis thaliana. The GI-CO-FT pathway is highly conserved in plants. Here, we demonstrate that the circadian clock proteins LATE ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) not only repressed the floral transition ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant & cell physiology
دوره 47 5 شماره
صفحات -
تاریخ انتشار 2006