Genome-wide distribution of transposed Dissociation elements in maize.

نویسندگان

  • Erik Vollbrecht
  • Jon Duvick
  • Justin P Schares
  • Kevin R Ahern
  • Prasit Deewatthanawong
  • Ling Xu
  • Liza J Conrad
  • Kazuhiro Kikuchi
  • Tammy A Kubinec
  • Bradford D Hall
  • Rebecca Weeks
  • Erica Unger-Wallace
  • Michael Muszynski
  • Volker P Brendel
  • Thomas P Brutnell
چکیده

The maize (Zea mays) transposable element Dissociation (Ds) was mobilized for large-scale genome mutagenesis and to study its endogenous biology. Starting from a single donor locus on chromosome 10, over 1500 elements were distributed throughout the genome and positioned on the maize physical map. Genetic strategies to enrich for both local and unlinked insertions were used to distribute Ds insertions. Global, regional, and local insertion site trends were examined. We show that Ds transposed to both linked and unlinked sites and displayed a nonuniform distribution on the genetic map around the donor r1-sc:m3 locus. Comparison of Ds and Mutator insertions reveals distinct target preferences, which provide functional complementarity of the two elements for gene tagging in maize. In particular, Ds displays a stronger preference for insertions within exons and introns, whereas Mutator insertions are more enriched in promoters and 5'-untranslated regions. Ds has no strong target site consensus sequence, but we identified properties of the DNA molecule inherent to its local structure that may influence Ds target site selection. We discuss the utility of Ds for forward and reverse genetics in maize and provide evidence that genes within a 2- to 3-centimorgan region flanking Ds insertions will serve as optimal targets for regional mutagenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new resource of locally transposed Dissociation elements for screening gene-knockout lines in silico on the Arabidopsis genome.

We transposed Dissociation (Ds) elements from three start loci on chromosome 5 in Arabidopsis (Nossen ecotype) by using a local transposition system. We determined partial genomic sequences flanking the Ds elements and mapped the elements' insertion sites in 1,173 transposed lines by comparison with the published genomic sequence. Most of the lines contained a single copy of the Ds element. One...

متن کامل

Ac transposition from a T-DNA can generate linked and unlinked clusters of insertions in the tomato genome.

We have investigated the distribution of transposed Acs in the tomato genome. Our approach has been to clone the regions flanking the T-DNAs and transposed Acs from two transgenic lines of tomato and place these sequences on the tomato restriction fragment length polymorphism (RFLP) map. The distribution of transposed Acs around the T-DNA and at locations unlinked to the T-DNA indicates that Ac...

متن کامل

Distribution of unlinked transpositions of a Ds element from a T-DNA locus on tomato chromosome 4.

In maize, receptor sites for unlinked transpositions of Activator (Ac) elements are not distributed randomly. To test whether the same is true in tomato, the receptor sites for a Dissociation (Ds) element derived from Ac, were mapped for 26 transpositions unlinked to a donor T-DNA locus on chromosome 4. Four independent transposed Dss mapped to sites on chromosome 4 genetically unlinked to the ...

متن کامل

Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres.

We sequenced two maize bacterial artificial chromosome (BAC) clones anchored by the centromere-specific satellite repeat CentC. The two BACs, consisting of approximately 200 kb of cytologically defined centromeric DNA, are composed exclusively of satellite sequences and retrotransposons that can be classified as centromere specific or noncentromere specific on the basis of their distribution in...

متن کامل

Transposition pattern of the maize element Ds in Arabidopsis thaliana.

As part of establishing an efficient transposon tagging system in Arabidopsis using the maize elements Ac and Ds, we have analyzed the inheritance and pattern of Ds transposition in four independent Arabidopsis transformants. A low proportion (33%) of plants inheriting the marker used to monitor excision contained a transposed Ds. Selection for the transposed Ds increased this to at least 49%. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 22 6  شماره 

صفحات  -

تاریخ انتشار 2010