A lower bound for the b-adic diaphony

نویسندگان

  • Ligia L. Cristea
  • Friedrich Pillichshammer
چکیده

La diafonia b-adica è una misura quantitativa della irregularità di distribuzione di un insieme di punti nel cubo unità s-dimensionale. In questi appunti mostriamo che la diafonia b-adica (per un numero primo b) di un insieme di N punti nel cubo unità di dimensione s è sempre almeno di ordine (logN)(s−1)/2/N . Questo limite inferiore è il migliore possibile. Abstract The b-adic diaphony is a quantitative measure for the irregularity of distribution of a point set in the s-dimensional unit cube. In this note we show that the b-adic diaphony (for prime b) of a point set consisting of N points in the s-dimensional unit cube is always at least of order (logN)(s−1)/2/N . This lower bound is best possible.The b-adic diaphony is a quantitative measure for the irregularity of distribution of a point set in the s-dimensional unit cube. In this note we show that the b-adic diaphony (for prime b) of a point set consisting of N points in the s-dimensional unit cube is always at least of order (logN)(s−1)/2/N . This lower bound is best possible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The b-adic diaphony of digital (0, 1)-sequences: A central limit theorem and a relation to the classical diaphony

The b-adic diaphony is a quantitative measure for the irregularity of distribution of a sequence in the unit interval. In this paper we show that the b-adic diaphony of digital (0, 1)-sequences satisfies a central limit theorem. Further we show a relation between the functions χ δj b and ψb, which appear in the formulas for the classical diaphony and the b-adic diaphony of digital (0, 1)-NUT-se...

متن کامل

The b-adic Diaphony as a Tool to Study Pseudo-randomness of Nets

We consider the b-adic diaphony as a tool to measure the uniform distribution of sequences, as well as to investigate pseudo-random properties of sequences. The study of pseudo-random properties of uniformly distributed nets is extremely important for quasi-Monte Carlo integration. It is known that the error of the quasi-Monte Carlo integration depends on the distribution of the points of the n...

متن کامل

A good permutation for one-dimensional diaphony

In this article we focus on two aspects of one-dimensional diaphony F.S b ; N / of generalised van der Corput sequences in arbitrary bases. First we give a permutation with the best distribution behaviour concerning the diaphony known so far. We improve a result of Chaix and Faure from 1993 from a value of 1:31574 : : : for a permutation in base 19 to 1:13794 : : : for our permutation in base 5...

متن کامل

A Numerical Test about the Generalized B-adic Diaphony of the Sequence of Halton

In the present paper the authors give numerical results about the distribution of a special type of a sequencethe so-called sequence of Halton in comparison with theoretical estimations, obtained by theoretical examinations presented before. The so-called "generalized b-adic diaphony", which is based on the Walsh functional system over finite groups is taken as a measure for uniform distributio...

متن کامل

A Novel B and B Algorithm for a Unrelated Parallel Machine Scheduling Problem to Minimize the Total Weighted Tardiness

This paper presents a scheduling problem with unrelated parallel machines and sequencedependent setup times that minimizes the total weighted tardiness. A new branch-and-bound (B and B) algorithm is designed incorporating the lower and upper bounding schemes and several dominance properties. The lower and upper bounds are derived through an assignment problem and the composite dispatching rule ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007