BC3EE2,9B, a synthetic carbazole derivative, upregulates autophagy and synergistically sensitizes human GBM8901 glioblastoma cells to temozolomide

نویسندگان

  • CHIEN-MIN CHEN
  • JHIH-PU SYU
  • TZONG-DER WAY
  • LI-JIAU HUANG
  • SHENG-CHU KUO
  • CHUNG-TIEN LIN
  • CHIH-LI LIN
چکیده

Glioblastoma multiforme (GBM) is the most fatal form of human brain cancer. Although temozolomide (TMZ), an oral alkylating chemotherapeutic agent, improves the survival rate, the prognosis of patients with GBM remains poor. Naturally occurring carbazole alkaloids isolated from curry leaves (Murraya koenigii Spreng.) have been shown to possess a wide range of anticancer properties. However, the effects of carbazole derivatives on glioblastoma cells remain poorly understood. In the present study, anti‑glioblastoma profiles of a series of synthetic carbazole derivatives were evaluated in vitro. The most promising derivative in this series was BC3EE2,9B, which showed significant anti‑proliferative effects in GBM8401 and GBM8901 cells. BC3EE2,9B also triggered cell‑cycle arrest, most prominently at the G1 stage, and suppressed glioblastoma cell invasion and migration. Furthermore, BC3EE2,9B induced autophagy‑mediated cell death and synergistically sensitized GBM cells to TMZ cytotoxicity. The possible mechanism underlying BC3EE2,9B‑induced autophagy may involve activation of adenosine monophosphate-activated protein kinase and the attenuation of the Akt and mammalian target of the rapamycin downstream signaling pathway. Taken together, the present results provide molecular evidence for the mode of action governing the ability of BC3EE2,9B to sensitize drug‑resistant glioblastoma cells to the chemotherapeutic agent TMZ.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thymoquinone synergistically potentiates temozolomide cytotoxicity through the inhibition of autophagy in U87MG cell line

Objective(s): Glioblastoma multiforme (GBM) is one of the most lethal forms of human cancer and temozolomide (TMZ) is currently part of the standard treatment for this disease. Combination therapy using natural substances can enhance the anti-cancer activity of TMZ. The purpose of this study was to evaluate the effect of TMZ in combination with thymoquinone (TQ) on human GBM cell line (U87MG). ...

متن کامل

In Vitro Radiosensitizing Effects of Temozolomide on U87MG Cell Lines of Human Glioblastoma Multiforme

Background: Glioma is the most common primary brain tumor with poor prognosis. Temozolomide (TMZ) has been used with irradiation (IR) to treat gliomas. The aim of the present study was to evaluate the cytotoxic and radiosensitizing effect of TMZ when combined with high-dose and high-dose rate of gamma irradiation in vitro.Methods: Two ‘U87MG’ cell lines and skin fibroblast were cultured and ass...

متن کامل

Thymoquinone synergistically potentiates temozolomide cytotoxicity through the inhibition of autophagy in U87MG cell line

OBJECTIVES Glioblastoma multiforme (GBM) is one of the most lethal forms of human cancer and temozolomide (TMZ) is currently part of the standard treatment for this disease. Combination therapy using natural substances can enhance the anti-cancer activity of TMZ. The purpose of this study was to evaluate the effect of TMZ in combination with thymoquinone (TQ) on human GBM cell line (U87MG). M...

متن کامل

KML001, a Telomere-Targeting Drug, Sensitizes Glioblastoma Cells to Temozolomide Chemotherapy and Radiotherapy through DNA Damage and Apoptosis

Standard treatment for glioblastoma comprises surgical resection, chemotherapy with temozolomide, and radiotherapy. Nevertheless, majority of glioblastoma patients have recurrence from resistance to the cytotoxic conventional therapies. We examined combinational effects of KML001, an arsenic compound targeting telomeres of chromosomes with temozolomide or irradiation, in glioblastoma cell lines...

متن کامل

Connexin 43 Inhibition Sensitizes Chemoresistant Glioblastoma Cells to Temozolomide.

Resistance of glioblastoma (GBM) to the front-line chemotherapeutic agent temozolomide (TMZ) continues to challenge GBM treatment efforts. The repair of TMZ-induced DNA damage by O-6-methylguanine-DNA methyltransferase (MGMT) confers one mechanism of TMZ resistance. Paradoxically, MGMT-deficient GBM patients survive longer despite still developing resistance to TMZ. Recent studies indicate that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2015