Cyclic olefin homopolymer-based microfluidics for protein crystallization and in situ X-ray diffraction
نویسندگان
چکیده
Microfluidics is a promising technology for the rapid identification of protein crystallization conditions. However, most of the existing systems utilize silicone elastomers as the chip material which, despite its many benefits, is highly permeable to water vapour. This limits the time available for protein crystallization to less than a week. Here, the use of a cyclic olefin homopolymer-based microfluidics system for protein crystallization and in situ X-ray diffraction is described. Liquid handling in this system is performed in 2 mm thin transparent cards which contain 500 chambers, each with a volume of 320 nl. Microbatch, vapour-diffusion and free-interface diffusion protocols for protein crystallization were implemented and crystals were obtained of a number of proteins, including chicken lysozyme, bovine trypsin, a human p53 protein containing both the DNA-binding and oligomerization domains bound to DNA and a functionally important domain of Arabidopsis Morpheus' molecule 1 (MOM1). The latter two polypeptides have not been crystallized previously. For X-ray diffraction analysis, either the cards were opened to allow mounting of the crystals on loops or the crystals were exposed to X-rays in situ. For lysozyme, an entire X-ray diffraction data set at 1.5 A resolution was collected without removing the crystal from the card. Thus, cyclic olefin homopolymer-based microfluidics systems have the potential to further automate protein crystallization and structural genomics efforts.
منابع مشابه
Crystallization via tubing microfluidics permits both in situ and ex situ X-ray diffraction.
A microfluidic platform was used to address the problems of obtaining diffraction-quality crystals and crystal handling during transfer to the X-ray diffractometer. Crystallization conditions of a protein of pharmaceutical interest were optimized and X-ray data were collected both in situ and ex situ.
متن کاملUsing nanoliter plugs in microfluidics to facilitate and understand protein crystallization.
Protein crystallization is important for determining protein structures by X-ray diffraction. Nanoliter-sized plugs--aqueous droplets surrounded by a fluorinated carrier fluid--have been applied to the screening of protein crystallization conditions. Preformed arrays of plugs in capillary cartridges enable sparse matrix screening. Crystals grown in plugs inside a microcapillary may be analyzed ...
متن کاملX-ray transparent Microfluidics for Protein Crystallization and Biomineralization
X-ray transparent Microfluidics for Protein Crystallization and Biomineralization A dissertation presented to the Faculty of the Graduate School of Arts and Sciences of Brandeis University, Waltham, Massachusetts by Achini Opathalage Protein crystallization demands the fundamental understanding of nucleation and applying techniques to find the optimal conditions to achieve the kinetic pathway f...
متن کاملThe plug-based nanovolume Microcapillary Protein Crystallization System (MPCS)
The Microcapillary Protein Crystallization System (MPCS) embodies a new semi-automated plug-based crystallization technology which enables nanolitre-volume screening of crystallization conditions in a plasticware format that allows crystals to be easily removed for traditional cryoprotection and X-ray diffraction data collection. Protein crystals grown in these plastic devices can be directly s...
متن کاملA method of cryoprotection for protein crystallography by using a microfluidic chip and its application for in situ X-ray diffraction measurements.
We demonstrate a seamless and contactless method from protein crystallization to X-ray analysis using a microfluidic chip with the aim of obtaining a complete crystallographic data set of a protein crystal under cryogenic conditions. Our microfluidics-based approach did not require direct manipulation of the protein crystal. Therefore, the microfluidic chip approach is suitable for novices of X...
متن کامل