Ribonucleic Acid Synthesis during Mitosis and Meiosis in the Mouse Testis

نویسنده

  • Valerio Monesi
چکیده

The pattern of ribonucleic acid synthesis during germ cell development, from the stem cell to the mature spermatid, was studied in the mouse testis, by using uridine-H(3) or cytidine-H(3) labeling and autoradiography. Incorporation of tritiated precursors into the RNA occurs in spermatogonia, resting primary spermatocytes (RPS), throughout the second half of pachytene stage up to early diplotene, and in the Sertoli cells. Cells in leptotene, zygotene, and in the first half of pachytene stage do not synthesize RNA. No RNA synthesis was detected in meiotic stages later than diplotene, with the exception of a very low rate of incorporation in a fraction of secondary spermatocytes and very early spermatids. At long intervals after administration of the tracer, as labeled cells develop to more mature stages, late stages of spermatogenesis also become labeled. The last structures to become labeled are the residual bodies of Regaud. Thus, the RNA synthesized during the active meiotic stages is partially retained within the cell during further development. The rate of RNA synthesis declines gradually with the maturation from type A to intermediate to type B spermatogonia and to resting primary spermatocytes. "Dormant" type A spermatogonia synthesize little or no RNA. The incorporation of RNA precursors occurs exclusively within the nucleus: at later postinjection intervals the cytoplasm also becomes labeled. In spermatogonia all mitotic stages, except metaphase and anaphase, were shown to incorporate uridine-H(3). RNA synthesis is then a continuous process throughout the cell division cycle in spermatogonia (generation time about 30 hours), and stops only for a very short interval (1 hour) during metaphase and anaphase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی بیان ژن Tsga10 در فرایند تمایز سلول‌های بنیادی جنینی موشی به سلول‌های ژرمینال در محیط آزمایشگاهی

Background: About 15% of couples have fertility problems and male factor in fertility accounts for half of the cases. In vitro generation of germ cells introduces a novel approach to male infertility and provides an effective system in gene tracking studies, however many aspects of this process have remained unclear. We aimed to promote mouse embryonic stem cells (mESCs) differentiation into ge...

متن کامل

Study of Tnp1, Tekt1, and Plzf Genes Expression During an in vitro Three-Dimensional Neonatal Male Mice Testis Culture

Background: In vitro spermatogenesis has a long research history beginning in the early 20th century. This organ culture method was therefore abandoned, and alternative cell culture methods were chosen by many researchers. Here, whether Tnp1, Tekt1, and Plzf, which play a crucial role in spermatogenesis, can be expressed during testis organ culture was assessed. Methods: Testes of 10 mouse pups...

متن کامل

Constitutive Expression of Interleukin-1α Messenger Ribonucleic Acid in Rat Sertoli Cells Is Dependent upon Interaction with Germ Cells.

Interleukin-1 (IL-1), a proinflammatory cytokine originally isolated as a product of activated mononuclear phagocytes, consists of two distinct agonist proteins, IL-1alpha and IL-1beta, of which IL-1beta is the major inducible IL-1 protein produced by macrophages. We show here that mRNA of IL-1alpha, but not IL-1beta, is constitutively expressed by the intact rat testis and localize the transcr...

متن کامل

FGF9 suppresses meiosis and promotes male germ cell fate in mice.

Sex determination of mammalian germ cells occurs during fetal development and depends on signals from gonadal somatic cells. Previous studies have established that retinoic acid (RA) triggers ovarian germ cells to enter meiosis and thereby commit to oogenesis, whereas in the developing testis, the enzyme CYP26B1 degrades RA and germ cells are not induced to enter meiosis. Using in vitro and in ...

متن کامل

Glycerol-3-phosphate acyltransferase 4 gene is involved in mouse spermatogenesis.

Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the first committed step of de novo triacylglycerol synthesis by converting glycerol-3-phosphate to lysophosphatidic acid (LPA). LPA is a mitogen that mediates multiple cellular processes including cell proliferation. Four GPAT isoforms have been cloned to date. GPAT4 is strongly expressed in the mouse testis. Reverse transcription- polymera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 22  شماره 

صفحات  -

تاریخ انتشار 1964