Growth, defect formation, and morphology control of germanium-silicon semiconductor nanowire heterostructures.

نویسندگان

  • Shadi A Dayeh
  • Jian Wang
  • Nan Li
  • Jian Yu Huang
  • Aaron V Gin
  • S Thomas Picraux
چکیده

By the virtue of the nature of the vapor-liquid-solid (VLS) growth process in semiconductor nanowires (NWs) and their small size, the nucleation, propagation, and termination of stacking defects in NWs are dramatically different from that in thin films. We demonstrate germanium-silicon axial NW heterostructure growth by the VLS method with 100% composition modulation and use these structures as a platform to understand how defects in stacking sequence force the ledge nucleation site to be moved along or pinned at a single point on the triple-phase circumference, which in turn determines the NW morphology. Combining structural analysis and atomistic simulation of the nucleation and propagation of stacking defects, we explain these observations based on preferred nucleation sites during NW growth. The stacking defects are found to provide a fingerprint of the layer-by-layer growth process and reveal how the 19.5° kinking in semiconductor NWs observed at high Si growth rates results from a stacking-induced twin boundary formation at the NW edge. This study provides basic foundations for an atomic level understanding of crystalline and defective ledge nucleation and propagation during [111] oriented NW growth and improves understanding for control of fault nucleation and kinking in NWs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formation of Metal-Semiconductor Axial Nanowire Heterostructures through Controlled Silicidation Undergraduate Researcher

Semiconductor nanowires show promise for application in nanoscale electronics, but the difficulty of forming low-resistance ohmic contacts provides a challenge to their implementation. To improve the electrical performance of lithographically defined nickel contacts, nickel-silicide/ silicon axial nanowire heterostructures were formed by controlled partial silicidation. Prior to annealing, two-...

متن کامل

Gallium Nitride-Based Nanowire Radial Heterostructures for Nanophotonics

We report a new and general strategy for efficient injection of carriers in active nanophotonic devices involving the synthesis of well-defined doped core/shell/shell (CSS) nanowire heterostructures. n-GaN/InGaN/p-GaN CSS nanowire structures were grown by metal-organic chemical vapor deposition. Electron microscopy images reveal that the CSS nanowires are defect-free single crystalline structur...

متن کامل

One-dimensional hole gas in germanium/silicon nanowire heterostructures.

Two-dimensional electron and hole gas systems, enabled through band structure design and epitaxial growth on planar substrates, have served as key platforms for fundamental condensed matter research and high-performance devices. The analogous development of one-dimensional (1D) electron or hole gas systems through controlled growth on 1D nanostructure substrates, which could open up opportuniti...

متن کامل

Ledge-flow-controlled catalyst interface dynamics during Si nanowire growth.

Self-assembled nanowires offer the prospect of accurate and scalable device engineering at an atomistic scale for applications in electronics, photonics and biology. However, deterministic nanowire growth and the control of dopant profiles and heterostructures are limited by an incomplete understanding of the role of commonly used catalysts and specifically of their interface dynamics. Although...

متن کامل

III-V compound semiconductor nanostructures on silicon: Epitaxial growth, properties, and applications in light emitting diodes and lasers

Significant developments have occurred in the area of III-V compound semiconductor nanostructures. The scope of developments includes quantum dots and nanowires epitaxially grown on Si substrates, as well as their applications in light emitting diodes and lasers. Such nanoscale heterostructures exhibit remarkable structural, electrical, and optical properties. The highly effective lateral stres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 11 10  شماره 

صفحات  -

تاریخ انتشار 2011