Numerical Study of Spontaneous Ignition of Pressurized Hydrogen Release into Air
نویسندگان
چکیده
Numerical simulations have been carried out for spontaneous ignition of pressurized hydrogen release directly into air. Results showed a possible mechanism for spontaneous ignition due to molecular diffusion. To accurately calculate the molecular transport of species, momentum and energy in a multi-component gaseous mixture, a mixture-averaged multi-component approach was employed in which thermal diffusion is accounted for. To reduce false numerical diffusion, extremely fine meshes were used along with the ALE (Arbitrary Lagrangian-Eulerian) method. The ALE method was employed to track the moving contact surface with moving clustered grids. A detailed kinetic scheme with 21 elementary steps and 8 reactive chemical species was implemented for combustion chemistry. The scheme gives due consideration to third body reactions and reaction-rate pressure-dependant “fall-off” behavior. The autoignition of pressurized hydrogen release was previously observed in laboratory tests [2-3] and suspected as possible cause of some accidents. The present numerical study successfully captured this scenario. Autoignition was predicted to first take place at the tip region of the hydrogen-air contact surface due to mass and energy exchange between low temperature hydrogen and shock-heated air at the contact surface through molecular diffusion. The initial flame thickness is extremely thin due to the limiting molecular diffusion. The combustion region extends downward along the contact surface as it moves downstream. As the hydrogen jet developed downstream, the front contact surface tends to be distorted by the developed flow of the air. Turbulence plays an important role in mixing at the region of the distorted contact surface. This is thought to be a major factor for the initial laminar flame to turn into a final stable turbulent flame.
منابع مشابه
Numerical Study on Spontaneous Ignition of Pressurized Hydrogen Release through a Tube
The issue of spontaneous ignition of highly pressurized hydrogen release is of important safety concern, e.g. in the assessment of safety risk and design of safety measures. This paper reports on recent numerical investigation of this phenomenon through releases via a tube using a 5-order WENO scheme. A mixture-averaged multi-component approach was used for accurate calculation of molecular tra...
متن کاملNumerical Study of Spontaneous Ignition of Pressurized Hydrogen Release through a Length of Tube with Local Contraction
Numerical investigations have been conducted on the effect of the internal geometry of a local contraction on the spontaneous ignition of pressurized hydrogen release through a length of tube using a 5-order WENO scheme. A mixture-averaged multi-component approach was used for accurate calculation of molecular transport. The auto-ignition and combustion chemistry were accounted for using a 21-s...
متن کاملTheoretical study of the effect of hydrogen addition to natural gas-fueled direct-injection engines
The preparation of air–fuel mixture is considerably dependent on fluid flow dynamics to achieve improved performance, efficiency, and engine combustion in the appearance of flow. In this study, the effects of mixtures of hydrogen and compressed natural gas (CNG) on a spark ignition engine are numerically considered. This article presents the results of a direct-injection engine using methane–hy...
متن کاملIgnition of Hydrogen-air Mixing Layer in Turbulent Flows
Autoignition of a hydrogen-air scalar mixing layer in homogeneous turbulence is studied using direct numerical simulation (DNS). An initial counterflow of unmixed nitrogen-diluted hydrogen and heated air is perturbed by two-dimensional homogeneous turbulence. The temperature of the heated airstream is chosen to be 1100 K, which is substantially higher than the crossover temperature at which the...
متن کاملThe Effect of Turbulent Mixing on Compression Ignition of a Lean Hydrogen/Air Mixture
The influence of a turbulent spectrum of the temperature field on compression ignition at constant volume under homogeneous charge compression ignition engine conditions is studied by direct numerical simulation with complex chemistry. In particular the dependence of overall ignition progress on initial mixture conditions and turbulence parameters is determined. The propagation speed of ignitio...
متن کامل