The circular chromatic index of Goldberg snarks

نویسنده

  • Mohammad Ghebleh
چکیده

We determine the exact values of the circular chromatic index of the Goldberg snarks, and of a related family, the twisted Goldberg snarks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Circular Chromatic Index of Generalized Blanusa Snarks

In his Master’s thesis, Ján Mazák proved that the circular chromatic index of the type 1 generalized Blanuša snark B n equals 3+ 2 n . This result provided the first infinite set of values of the circular chromatic index of snarks. In this paper we show the type 2 generalized Blanuša snark B n has circular chromatic index 3 + 1 b1+3n/2c . In particular, this proves that all numbers 3 + 1/n with...

متن کامل

The Circular Chromatic Index of Flower Snarks

We determine the circular chromatic index of flower snarks, by showing that χc(F3) = 7/2, χ ′ c(F5) = 17/5 and χ ′ c(Fk) = 10/3 for every odd integer k ≥ 7, where Fk denotes the flower snark on 4k vertices.

متن کامل

Asymptotic Lower Bounds on Circular Chromatic Index of Snarks

We prove that the circular chromatic index of a cubic graph G with 2k vertices and chromatic index 4 is at least 3 + 2/k. This bound is (asymptotically) optimal for an infinite class of cubic graphs containing bridges. We also show that the constant 2 in the above bound can be increased for graphs with larger girth or higher connectivity. In particular, if G has girth at least 5, its circular c...

متن کامل

The hunting of a snark with total chromatic number 5

A snark is a cyclically-4-edge-connected cubic graph with chromatic index 4. In 1880, Tait proved that the Four-Color Conjecture is equivalent to the statement that every planar bridgeless cubic graph has chromatic index 3. The search for counter-examples to the FourColor Conjecture motivated the definition of the snarks. A k-total-coloring of G is an assignment of k colors to the edges and ver...

متن کامل

The total-chromatic number of some families of snarks

The total chromatic number χ T (G) is the least number of colours needed to colour the vertices and edges of a graph G, such that no incident or adjacent elements (vertices or edges) receive the same colour. It is known that the problem of determining the total chromatic number is NP-hard and it remains NP-hard even for cubic bipartite graphs. Snarks are simple connected bridgeless cubic graphs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 307  شماره 

صفحات  -

تاریخ انتشار 2007