Radiation-Induced Attenuation of Perfluorinated Polymer Optical Fibers for Radiation Monitoring
نویسندگان
چکیده
Due to some of their unique properties, optical fiber dosimeters are attractive and extensively researched devices in several radiation-related areas. This work evaluates the performance and potential of commercial perfluorinated polymer optical fibers (PF-POFs) for radiation monitoring applications. Gamma radiation-induced attenuation (RIA) of two commercial PF-POFs is evaluated in the VIS spectral region. Influence of a dose rate and temperature on RIA measurement is investigated, along with defect stability and measurement repeatability. Co-extruded PF-POFs are identified as more suitable for radiation monitoring applications due to lower dose-rate dependence. With co-extruded PF-POF, RIA measurement holds potential for highly-sensitive radiation monitoring with good reproducibility. The results show that operation in the blue part of the spectrum provides most favorable performance in terms of the largest nominal radiation sensitivity, lower temperature, and dose-rate dependence as well as higher defect stability. We demonstrate for the first time to our knowledge, that PF-POFs can be used for distributed detection of radiation with doses down to tens of Grays. The off-the-shelf, user-friendly PF-POF could be of interest as a cheap, disposable sensor for various applications, especially of a more qualitative nature.
منابع مشابه
Measurement of large-strain dependence of optical propagation loss in perfluorinated polymer fibers for use in seismic diagnosis
Brillouin scattering in perfluorinated graded-index (PFGI-) polymer optical fibers (POFs) has been extensively studied for structural health monitoring, including seismic diagnosis. Here, we measure the propagation loss of PFGI-POFs at telecom wavelengths as a function of large applied strain (up to 100%) at three optical powers and as a function of strain rate at a constant optical power. The ...
متن کاملOptical Characterization of NIPAM and PAGAT Polymer Gels for Radiation Dosimetry
Introduction The purpose of the current study was to determine optical sensitivity of N-isopropyl acrylamide NIPAM and polyacrylamide gelatin and tetrakis hydroxymethyl phosphoniun chloride (PAGAT) polymer gels for different wavelength of visible light spectrum applied in optical computed tomography method. Materials and Methods NIPAM and PAGAT polymer gels with conventional formulations used f...
متن کاملGraded-Index Polymer Optical Fiber (GI-POF)
Plastic Optical Fiber Perfluorinated graded-index polymer optical fibers (GI-POFs) combine high data transmission rates and low attenuation in the commercially desirable 850–1300nm range. GI-POFs offer a direct replacement and a low cost alternative to traditional glass. With ease of use and affordability, GI-POFs make an excellent choice for the installation of high performance fiber networks....
متن کاملRadiation attenuation properties of shields containing micro and Nano WO3 in diagnostic X-ray energy range
Background: It has recently been shown that the particle size of materials used for radiation shielding can affect the magnitude of radiation attenuation. Over the past years, application of nano-structured materials in radiation shielding has attracted attention world-wide. The purpose of this study was to investigate the shielding properties of the lead-free shields containing micro and nano-...
متن کاملOrigin of the Radiation-Induced OH Vibration Band in Polymer-Coated Optical Fibers Irradiated in a Nuclear Fission Reactor
We measured in situ the radiation-induced absorption of pure silica core fibers exposed to a fission nuclear radiation. We observed the growth of the 1.38m OH vibration band in polymer coated fiber. Two contributions, a gamma-induced hydrogen diffusion and the recoil protons, are compared. The major contribution to the OH content growth is identified to originate from the gamma-induced hydrogen...
متن کامل