The Matrix Version for the Multivariable Humbert Polynomials

نویسندگان

  • RABİA AKTAŞ
  • BAYRAM ÇEKİM
  • RECEP ŞAHİN
چکیده

In this paper, the matrix extension of the multivariable Humbert polynomials is introduced. Various families of linear, multilinear and multilateral generating matrix functions of these matrix polynomials are presented. Miscellaneous applications are also discussed. 2000 Mathematics Subject Classification: 33C25; 15A60

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some New Results for the Multivariable Humbert Polynomials

In this paper, we present some miscellaneous properties of the multivariable Humbert polynomials whose special cases include some well-known multivariable polynomials such as Chan-Chyan-Srivastava, Lagrange-Hermite and Erkus-Srivastava multivariable polynomials. We give recurrence relations, addition formula and integral representation for them. Then, we obtain some partial differential equatio...

متن کامل

On a Family of Multivariate Modified Humbert Polynomials

This paper attempts to present a multivariable extension of generalized Humbert polynomials. The results obtained here include various families of multilinear and multilateral generating functions, miscellaneous properties, and also some special cases for these multivariable polynomials.

متن کامل

A fractional type of the Chebyshev polynomials for approximation of solution of linear fractional differential equations

In this paper we introduce a type of fractional-order polynomials based on the classical Chebyshev polynomials of the second kind (FCSs). Also we construct the operational matrix of fractional derivative of order $ gamma $ in the Caputo for FCSs and show that this matrix with the Tau method are utilized to reduce the solution of some fractional-order differential equations.

متن کامل

Higher rank numerical ranges of rectangular matrix polynomials

In this paper, the notion of rank-k numerical range of rectangular complex matrix polynomials are introduced. Some algebraic and geometrical properties are investigated. Moreover, for ϵ > 0; the notion of Birkhoff-James approximate orthogonality sets for ϵ-higher rank numerical ranges of rectangular matrix polynomials is also introduced and studied. The proposed denitions yield a natural genera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012