A corrected quadrature formula and applications
نویسندگان
چکیده
A straightforward 3-point quadrature formula of closed type is derived that improves on Simpson’s rule. Just using the additional information of the integrand’s derivative at the two endpoints we show the error is sixth order in grid spacing. Various error bounds for the quadrature formula are obtained to quantify more precisely the errors. Applications in numerical integration are given. With these error bounds, which are generally better than the usual Peano bounds, the composite formulas can be applied to integrands with lower order derivatives.
منابع مشابه
Some extended Simpson-type inequalities and applications
In this paper, we shall establish some extended Simpson-type inequalities for differentiable convex functions and differentiable concave functions which are connected with Hermite-Hadamard inequality. Some error estimates for the midpoint, trapezoidal and Simpson formula are also given.
متن کاملTwelfth degree spline with application to quadrature
In this paper existence and uniqueness of twelfth degree spline is proved with application to quadrature. This formula is in the class of splines of degree 12 and continuity order [Formula: see text] that matches the derivatives up to order 6 at the knots of a uniform partition. Some mistakes in the literature are pointed out and corrected. Numerical examples are given to illustrate the applica...
متن کاملSeveral error inequalities for a quadrature formula with a parameter and applications
In this paper, we will derive several error inequalities for a quadrature formula with a parameter, which will not only provide some generalizations of the known results, but also give some other interesting quadrature formulae as special cases. Furthermore, sharp upper and lower error bounds for the double error inequalities are obtained. Applications in numerical integration are also given. ©...
متن کاملA Survey of Gauss-Christoffel Quadrature Formulae
4. 4.1. 4.1.1. 4.1.2. 4.1.3. 4.2. 4.3. Gaussian quadrature with preassigned nodes Christoffel's work and related developments Kronrod's extension of quadrature rules Gaussian quadrature with multiple nodes The quadrature formula of Turan Arbitrary multiplicities and preassigned nodes Power-orthogonal polynomials Constructive aspects and applications Further miscellaneous extensions Product-type...
متن کاملHigh order quadrature based iterative method for approximating the solution of nonlinear equations
In this paper, weight function and composition technique is utilized to speeds up the convergence order and increase the efficiency of an existing quadrature based iterative method. This results in the proposition of its improved form from a two-point quadrature based method of convergence order ρ = 3 with efficiency index EI = 1:3161 to a three-point method of convergence order ρ = 8 with EI =...
متن کامل