Pre- and postsynaptic beta-adrenergic activation enhances excitatory synaptic transmission in layer V/VI pyramidal neurons of the medial prefrontal cortex of rats.
نویسندگان
چکیده
Norepinephrine exerts an important influence on prefrontal cortical functions. The physiological effects of beta-adrenoceptors (beta-ARs) have been examined in other brain regions. However, little is known about beta-AR regulation of synaptic transmission in the prefrontal cortex (PFC). The present study investigated beta-AR modulation of glutamate synaptic transmission in layer V/VI pyramidal cells of the medial PFC (mPFC) of rats. Our results show that 1) isoproterenol (ISO), a selective beta-AR agonist, increased the frequency of spontaneous and miniature excitatory postsynaptic currents (EPSC's); 2) ISO enhancement of miniature EPSC's (mEPSC's) frequency no longer appeared in the presence of the voltage-gated Ca(2+) channel blocker cadmium; 3) ISO enhanced the evoked excitatory postsynaptic currents (eEPSC's) mediated by non-N-methyl-D-aspartic acid receptors (non-NMDA-Rs) and NMDA-Rs. The ISO facilitation of non-NMDA-R eEPSC was blocked by the membrane-permeable cyclic adenosine monophosphate (cAMP) inhibitor Rp-adenosine 3',5'-cyclic monophosphorothioate triethylammonium salt (Rp-cAMPS); 4) ISO enhanced NMDA-induced current, with no effect on glutamate-induced non-NMDA-R current; 5) ISO enhancement of NMDA-R eEPSC and NMDA-induced current was blocked by intracellular application of Rp-cAMPS or the cAMP-dependent protein kinase (PKA) inhibitor PKI(5-24); and 6) ISO suppressed the paired-pulse facilitation of non-NMDA-R and NMDA-R eEPSC's. Taken together, these results provide the first electrophysiological demonstration that beta-AR activation facilitates excitatory synaptic transmission in mPFC pyramidal cells through pre- and postsynaptic mechanisms, probably via cAMP or cAMP/PKA signaling.
منابع مشابه
Pre- and Postsynaptic b-Adrenergic Activation Enhances Excitatory Synaptic Transmission in Layer V/VI Pyramidal Neurons of the Medial Prefrontal Cortex of Rats
Institute of Neurobiology, Institutes of Brain Science, Fudan University, Shanghai 200032, China, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai 200032, China, Pharmacology Research Center, Institutes of Brain Science, Fudan University, Shanghai 200032, China and Shanghai Institute of Brain Functional Genomics, East China Normal University,...
متن کاملNoradrenergic System Increases Miniature Excitatory Synaptic Currents in the Barrel Cortex
Introduction: Neurons in layer II and III of the somatosensory cortex in rats show high frequency (33 ± 13 Hz) of miniature excitatory postsynaptic currents (mEPSCs) that their rates and amplitudes are independent of sodium channels. There are some changes in these currents in neurodegenerative and psychological disorders. Regarding to well known roles of the neuromodulatory brain systems in...
متن کامل(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex
Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...
متن کاملPresynaptic mechanism underlying cAMP-induced synaptic potentiation in medial prefrontal cortex pyramidal neurons.
cAMP, a classic second messenger, has been proposed recently to participate in regulating prefrontal cortical cognitive functions, yet little is known about how it does so. In this study, we used forskolin, an adenylyl cyclase activator, to examine the effects of cAMP on excitatory synaptic transmission in the medial prefrontal cortex (mPFC) using whole-cell patch-clamp recordings from visually...
متن کاملEffects of Ketamine on Neuronal Spontaneous Excitatory Postsynaptic Currents and Miniature Excitatory Postsynaptic Currents in the Somatosensory Cortex of Rats
Background: Ketamine is a commonly used intravenous anesthetic which produces dissociation anesthesia, analgesia, and amnesia. The mechanism of ketamine-induced synaptic inhibition in high-level cortical areas is still unknown. We aimed to elucidate the effects of different concentrations of ketamine on the glutamatergic synaptic transmission of the neurons in the primary somatosensory cortex b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cerebral cortex
دوره 18 7 شماره
صفحات -
تاریخ انتشار 2008